
A TRIDENT SCHOLAR
PROJECT REPORT

NO. 444

Cooperative Control of Unmanned Surface Vessels and Unmanned Underwater
Vessels for Asset Protection

by

Midshipman 1/C Gabriel Y.K. Tang, USN

UNITED STATES NAVAL ACADEMY
ANNAPOLIS, MARYLAND

USNA-1531-2

This document has been approved for public
release and sale; its distribution is limited.

� �

U.S.N.A. --- Trident Scholar project report; no. 444 (2015)

COOPERATIVE CONTROL OF UNMANNED SURFACE VESSELS AND UNMANNED
UNDERWATER VESSELS FOR ASSET PROTECTION

by

Midshipman 1/C Gabriel Y.K. Tang
United States Naval Academy

Annapolis, Maryland

(signature)

Certification of Adviser(s) Approval

Professor Bradley E. Bishop

Weapons and Systems Engineering Department

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Maria J. Schroeder
Associate Director of Midshipman Research

(signature)

(date)

USNA-1531-2

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
05-18-2015

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Cooperative Control of Unmanned Surface Vessels and Unmanned Underwater Vessels for
Asset Protection

5a. CONTRACT NUMBER

 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Tang, Gabriel Ying Kit

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Naval Academy
Annapolis, MD 21402
 11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)
 Trident Scholar Report no. 444 (2015)
12. DISTRIBUTION / AVAILABILITY STATEMENT

This document has been approved for public release; its distribution is UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 This project focused on the development of a control system for a heterogeneous swarm of unmanned surface vessels (USVs) and
unmanned underwater vehicles (UUVs) used for asset protection. The control system utilizes a hybrid control scheme, relying on both
behavior-based and systems-theoretic concepts. Under this hybrid approach, the swarm is provided with better adaptability, robustness, and
overall performance than it would possess under either of these methods alone. Simulations demonstrate the efficacy of the controller for
the primary task (asset protection) as well as several secondary tasks.
 The first part of this project focused on generating the capability functions, designing the primary and secondary controller and utilizing
simulations in different environments to ensure that the controller works as desired. The second part of the project then focused on the
hybrid aspect of the swarm, where long baseline technique were used in order to localize the UUV and to mitigate capability degradation in
the sub-surface domain. The ability to interdict targets on the surface and the sub-surface was also considered and included as part of the
capability control system. The results of this experiment provide a robust, adaptable, and highly mission-capable control system for a
cooperative swarm of USVs and UUVs. This in turn will provide the foundation for future systems of a cooperative nature.

15. SUBJECT TERMS
hybrid control, cooperative control, swarm control, redundant manipulator, capability, heterogeneous swarm

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

119

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

��

AABSTRACT

This project focused on the development of a control system for a heterogeneous swarm of

unmanned surface vessels (USVs) and unmanned underwater vehicles (UUVs) used for asset

protection. The control system utilizes a hybrid control scheme, relying on both behavior-based

and systems-theoretic concepts. Under this hybrid approach, the swarm is provided with better

adaptability, robustness, and overall performance than it would possess under either of these

methods alone. Simulations demonstrate the efficacy of the controller for the primary task (asset

protection) as well as several secondary tasks.

Previous swarm control techniques have relied on either an a priori formation or a

statistical approach wherein the swarm was controlled based on its overall mean and variance.

While these approaches allow the user to control the shape or extent of the swarm, they remain

limited in that they are not mission-based and take into account the capabilities of the units only

insofar as the designer has tuned the system to accommodate them. This project therefore

utilizes a capability function as the driver for the swarm. This capability function uses real time

sensor data in order to measure and allow control of actual mission parameters – for example,

the probability of detection of a patrol vessel. Based on the capability desired, the swarm

maneuvers itself such that the capability desired is met.

The techniques used to achieve capability-based control accommodate the inclusion of

secondary objectives for the swarm. These tasks are defined and carried out in such a way as

to allow the primary task to be unaffected, utilizing redundancy that is inherent in a many-unit

swarm.

The first part of this project focused on generating the capability functions, designing the

primary and secondary controller and utilizing simulations in different environments to ensure

��

that the controller works as desired. The second part of the project then focused on the hybrid

aspect of the swarm, where long baseline technique were used in order to localize the UUV and

to mitigate capability degradation in the sub-surface domain. The ability to interdict targets on

the surface and the sub-surface was also considered and included as part of the capability

control system.

 The results of this experiment provide a robust, adaptable, and highly mission-capable

control system for a cooperative swarm of USVs and UUVs. This in turn will provide the

foundation for future systems of a cooperative nature.

Keywords

Hybrid Control

Cooperative Control

Swarm Control

Redundant Manipulator

Capability

Heterogeneous Swarm

��

AACKNOWLEDGEMENTS

There are a number of people without whom this Trident Scholar Project would not have been

possible – and to those people, I am greatly indebted and would like to express my deepest

appreciation and gratitude.

 To begin, I am especially grateful to Professor Bradley Bishop, my research advisor. His

guidance, support, patience and invaluable knowledge were instrumental in making this project

a success thus far. The countless hours of assistance and help are testament to his

commitment as an educator. Furthermore, I extend this debt of gratitude to the entire Systems

Engineering Faculty, for providing the resources and knowledge so readily.

Special thanks must be given to the Trident Scholar Committee – in particular, Professor

Maria Schroeder – for their continued support and assistance in facilitating this Trident Scholar

Project.

 Lastly, I am eternally grateful to the care and support of my parents, sponsor parents,

girlfriend and classmates. Without which, I would not have survived the Naval Academy, let

alone complete this project.

“"It is a great profession. There is the fascination of watching a figment of the imagination

emerge through the aid of science to a plan on paper. Then it moves to realization in stone or

metal or energy. Then it brings jobs and homes to men. Then it elevates the standards of living

and adds to the comforts of life. That is the engineer's high privilege.”

- Herbert C. Hoover

��

TTABLE OF CONTENTS

Abstract 1

Acknowledgements 3

Table of Contents 4

List of Figures 7

List of Equations 11

Chapter 1 Introduction 13

Chapter 2 Background and Theory 15

Chapter 3 Capability Function 18

 3.1 Overview 18

 3.2 Previous and Current Work 18

 3.3 Capability for Surface Detection through Electro-Optics 19

 3.4 Capability for Surface Detection through Radar 23

 3.5 Capability for Sub-Surface Detection through Active Sonar 27

Chapter 4 Primary Swarm Controller 29

4.1 Overview 29

4.2 Controller Matrices 30

4.3 Overall Capability 31

4.4 Jacobian Matrix 32

4.5 Primary Controller Equations 32

��

Chapter 5 Secondary Swarm Controller 34

5.1 Overview 34

5.2 Secondary Objectives 34

5.3 Artificial Potential Fields Theory 36

5.4 Final Controller 38

Chapter 6 Surface Simulations 39

6.1 Overview 39

6.2 Simulations with Primary Control 40

6.3 Simulations with Hybrid Control 43

Chapter 7 Sub-Surface Simulations 46

7.1 Overview 46

7.2 Simulations with Primary Control 46

7.3 Simulations with Hybrid Control 48

Chapter 8 Combined Simulations 51

8.1 Overview 51

8.2 Simulations with Primary Control 51

8.3 Simulations with Hybrid Control 53

Chapter 9 Cooperative Localization of UUVs 57

9.1 Overview 57

9.2 Previous and Current Works 58

9.3 Implementation of Cooperative Navigation 60

9.4 Simulation without Cooperative Navigation 61

9.5 Simulation with Cooperative Navigation 64

��

Chapter 10 Interdiction 68

10.1 Overview 68

10.2 Implementation of Interdiction 68

10.3 Interdiction with 3 UUV 1 USV Swarm 69

10.4 Interdiction with 4 UUV 1 USV Swarm 71

Chapter 11 Conclusions 75

11.1 Contributions 75

11.2 Future Works 75

Appendix A Code for Simple Surface Primary Simulation 59

Appendix B Code for Surface Hybrid Control 61

Appendix C Code for Sub-Surface Hybrid Control 65

Appendix D Code for Surface and Sub-Surface Hybrid Control 70

Appendix E Code for Cooperative Navigation 70

Appendix F Code for Cooperative Navigation and Interdiction 70

Bibliography 117

	�

LLIST OF FIGURES

Figure 2.1 Table of Comparison of Different Controllers 17

Figure 3.1 Rafael’s Toplite III Electro Optic 19

Figure 3.2 Capability Being Delivered as a Function of Distance for the TOPLITE EO 22

Figure 3.3 3D Representation of Capability Delivered for the TOPLITE EO 22

Figure 3.4 Overhead View of Capability Delivered for the TOPLITE EO 22

Figure 3.5 Telephonics RDR-1700A Radar System 23

Figure 3.6 Capability Delivered for the Telephonics RDR-1700A in 2D 25

Figure 3.7 3D Representation of Capability Delivered for the RDR-1700A Radar 26

Figure 3.8 Overhead View of Capability Delivered for the RDR-1700A Radar 26

Figure 3.9 Capability Delivered for Sonar with f = 1.5KHz 28

Figure 4.1 Block Diagram for Primary Controller 29

Figure 4.2: MATLAB Code to Calculate Overall Capability 31

Figure 5.1 Secondary Objectives for Swarms 35

Figure 5.2 Example of Artificial Potential Field 36

Figure 5.3 Block Diagram for Hybrid Controller 38

Figure 6.1 Two Unit Swarm with One Target 40

Figure 6.2 Change in Capability over Time for Two Unit Swarm 41

�

Figure 6.3 Four Unit Swarm with Two Targets for Primary Control 41

Figure 6.4 Four Unit Swarm with Two Targets Initial Position 42

Figure 6.5 Four Unit Swarm with Two Targets Final Position 42

Figure 6.6 Change in Capability Over Time for Four Unit Swarm 43

Figure 6.7 Four Unit Swarm with Two Targets for Hybrid Control 44

Figure 6.8 Four Unit Swarm with Two Targets for Hybrid Control at t = 5s 44

Figure 6.9 Capability Delivered Over Time for Hybrid Control 45

Figure 7.1 Front View for Sub-Surface Primary Control of 3 UUVs 47

Figure 7.2 Back View for Sub-Surface Primary Control of 3 UUVs 47

Figure 7.3 Capability Delivered over Time for Sub-Surface Primary Control of 3 UUVs 48

Figure 7.4 Front View for Sub-Surface Hybrid Control of 3 UUVs 49

Figure 7.5 Back View for Sub-Surface Hybrid Control of 3 UUVs 49

Figure 7.6 Capability Delivered over Time for Sub-Surface Hybrid Control of 3 UUV 50

Figure 8.1 Front View for Combined Hybrid Control of 4 USVs and 3 UUVs 52

Figure 8.2 Back View for Combined Hybrid Control of 4 USVs and 3 UUVs 52

Figure 8.3 Capability Delivered over Time for 4 USVs and 3 UUVs 53

Figure 8.4 Position of USVs and UUVs after T = 5s 54

Figure 8.5 Front View for Hybrid Control of 4 USVs and 3 UUVs 54

Figure 8.6 Back View for Hybrid Control of 4 USVs and 3 UUVs 55

��

Figure 8.7 Capability Delivered over Time for Hybrid Control of 4 USVs and 3 UUVs 55

Figure 9.1 Submersible Utilizing LBL Systems 58

Figure 9.2 CN Algorithm to Calculate Position of UUVs 58

Figure 9.3 Results of CN Algorithm 59

Figure 9.4 Capability Degradation of UUVs 60

Figure 9.5 Initial Simulation Set-up 62

Figure 9.6 Simulation End State (Top View) 62

Figure 9.7 Capability Delivered Over Time without CN 63

Figure 9.8 Initial Simulation 64

Figure 9.9 UUVs Providing Required Capability 65

Figure 9.10 UUV 3 Gets Localized 65

Figure 9.11 UUV 3 Replaces UUV 2’s Position 66

Figure 9.12 UUV 2 Gets Localized 66

Figure 9.13 Capability Delivered Over Time with CN 67

Figure 10.1 Initial Simulation Set-Up 69

Figure 10.2 Final Simulation Set-Up 70

Figure 10.3 Capability over Time for Interdiction with 3 UUVs 70

Figure 10.4 4 UUV 1 USV Simulation with Interdiction (t = 500s) 71

Figure 10.5 4 UUV 1 USV Simulation with Interdiction (t = 700s) 72

���

Figure 10.6 4 UUV 1 USV Simulation with Interdiction (t = 850s) 72

Figure 10.7 4 UUV 1 USV Simulation with Interdiction (t = 1000s) 73

Figure 10.8 4 UUV 1 USV Simulation with Interdiction (t = 1300s) 73

Figure 10.9 Capability over Time for 4 UUV 1 USV Simulation with Interdiction 74

���

LLIST OF EQUATIONS

Equation 1 Capability Function for Detection via EO 20

Equation 2 Signal-to-Noise Ratio Equation for Radar 24

Equation 3 Capability Function for Detection via Radar 24

Equation 4 Signal-to-Noise Ratio Equation for Sonar 27

Equation 5 Signal-to-Noise Ratio Conversion 27

Equation 6 Capability Function for Detection via Sonar 27

Equation 7 Swarm State Matrix Definition 30

Equation 8 Capability Desired Matrix Definition 30

Equation 9 Current Capability Definition 30

Equation 10 Overall Capability Calculation 31

Equation 11 Jacobian Matrix Definition 32

Equation 12 Change in Capability as a Function of Kinematics of Swarm 32

Equation 13 Definition of Moore Penrose Pseudoinverse 33

Equation 14 Control Equation for Primary Control 33

Equation 15 Null Space Projection for Secondary Control 35

Equation 16 Artificial Potential Field Repulsive Vector for X-Direction (2D) 37

Equation 17 Artificial Potential Field Repulsive Vector for Y-Direction (2D) 37

���

Equation 18 Artificial Potential Field Repulsive Vector for X-Direction (3D) 37

Equation 19 Artificial Potential Field Repulsive Vector for Y-Direction (3D) 37

Equation 20 Artificial Potential Field Repulsive Vector for Z-Direction (3D) 37

Equation 21 Control Equation for Hybrid Control 38

���

CCHAPTER 1 – INTRODUCTION

Nature has always remained a strong inspiration for the progress of technology. The very idea

of swarms – a large number of autonomous decentralized systems working together in

cooperation – was inspired by colonies of ants and bees. These large swarms act cooperatively

towards achieving a specific objective. Through the use of complex functions and algorithms,

mankind is able to artificially create swarms of autonomous systems to simulate those found in

nature.

 In recent conflicts in the Middle East, robots were increasingly used to take over

dangerous and menial tasks such as surveillance, reconnaissance and explosive ordnance

disposal. The effectiveness of such autonomous systems is reflected in the fact that militaries all

over the world are placing a renewed importance on autonomous systems and robots [1].

A single autonomous robot faces many limitations in terms of its cost effectiveness and

spatial area of influence, therefore, making it sub-optimal. However, a group of robots working

cooperatively and collectively removes several of the limitations that are imposed on a singular

unit. On October 5, 2014, the Office of Naval Research demonstrated a swarm of self-guided

unmanned patrol boats that could protect warships and attack potential threats [2]. This was a

monumental event as it represents a huge leap for swarming technology. Details of the exact

algorithm used and the depth of decision-making of the units are not yet available,

 While substantial effort in cooperation of autonomous surface vessels has been carried

out, there has been little effort toward heterogeneous swarms of cooperating surface and

subsurface autonomous vehicles. The goal of this Trident Scholar Research Project is focused

on cooperatively controlling a heterogeneous swarm of robots operating in two different

domains – the surface and underwater, simultaneously. Utilizing mission-specific properties of

���

the individual autonomous robotic units together with a cooperative controller, the swarm can

accomplish the overall goals efficiently and cooperatively.

���

CCHAPTER 2 – BACKGROUND AND THEORY

Controlling a swarm of robots is inherently more complicated compared to the control of a

singular entity. However, given the correct software and control techniques, the potential of

swarms is wide-reaching and revolutionary. This has provided the impetus for the development

of robotic swarms, especially in the military domain where the amorphous and distributed nature

of a well-controlled cooperative swarm could meet the demands of a constantly adaptive and

demanding environment.

 The theory behind a swarm’s ability to perform in an adaptive environment can be

attributed to the fact that a swarm can effectively be treated as a redundant manipulator. In

robotics, a redundant manipulator is characterized by having more joint space degrees of

freedom than there are dimensions of the end-effector or tool space [3]. For example, the

human arm has seven degrees of freedom from the shoulder to the wrist, while the hand

operates in a six-dimensional configuration space (three degrees of freedom for position and

three for orientation, ignoring the fingers). Thus, a typical human arm has one degree of

redundancy, so that there are many possible configurations of the shoulder/elbow/wrist that will

place the hand in a specific pose.

Thinking of a group of unmanned surface vessels (USVs) as a single unit, each member

contributes two degrees of freedom (considering only position on the surface of the water, for

now). If there are fewer task variables than degrees of freedom, the swarm is redundant in the

same way that a human arm is redundant. There will be an infinite number of possible

configurations for any achievable, non-degenerate (of the primary objective) set of swarm-level

objectives. Defining the mathematical representation of the task in an appropriate manner is

part of the research in this project.

���

 Using this method, early cooperation controllers focused on getting swarms to a specific

mean position with a specific spread (variance) [4]. This approach was only successful in

directing the swarm to a particular location and achieving an appropriate distribution of units, but

was inadequate in maximizing the potential of a heterogeneous swarm, particularly with respect

to the military mission and objective. In order to fully maximize each individual unit’s contribution

within the swarm, the “capability model” was developed to represent each unit’s delivered

functionality in a meaningful way [4]. The capability function will be further elaborated in Chapter

3.

 There are two generic approaches to swarm control that have been accepted as

mainstream – the systems-theoretic approach, and behavior-based approach [5]. The systems-

theoretic approach is effectively based on a deterministic control response of the system to

closed-form, mathematically-oriented mission specifications (such as maintaining a specific

trajectory or holding a particular GPS position). This allows every unit in the swarm to directly

achieve a specific outcome, enabling primary mission effectiveness. However, the individual

units lack the flexibility and unplanned nature of behavioral approaches. Hence, systems-

theoretic methods are unable to react to unanticipated changes in their environment, and deal

poorly with rapidly evolving conditions that may require significant re-planning. In order for this

form of control to be effective, the parameters of the given environment and mission must be

known, or at the very least be highly predictable. Unfortunately, the military domain remains

very volatile and unpredictable.

On the other hand, behavior-based approaches are flexible and simple to model; they

are based on a set of straightforward stimulus-response behaviors that are triggered by

appropriate conditions in a hierarchal scheme. An example of this approach would be a robot

that traveled forward unless something was within 6” in front of it, when it would turn in a

random direction until the obstacle was no longer seen. This scheme would result in a robot that

�
�

CCHAPTER 3 – CAPABILITY FUNCTIONS

3.1 Overview

A capability function is used in the developed approach as the primary driver for the control

system of a swarm. Capability is a mathematical representation of the functionality of each unit

across the operational space. For example, a camera system delivers capability defined in

pixels/meter. The capability changes based on the depth of field of the camera and is defined

by the optics of the system. In the swarm controller utilized in this work, the capability function

properly defines the overall effectiveness of the swarm based on mission specific properties –

effectively defining how important and efficient each individual swarm unit is. Due to the

importance of this capability function, real-world data and sensors were used to model the

capability function.

 For this project, asset protection is the mission. The task to be accomplished by the

system is to provide a pre-determined level of sensing and interdiction capability at specified

points. Each unit in the swarm will be characterized by its capability to detect/interdict surface

threats and underwater threats. The asset protection task will be defined by specifying desired

capability at certain points, both on the surface and underwater. These points and capability

levels would be determined by an operational analysis of potential threat vectors, and are not

discussed herein. Formal capability functions will be defined in the sequel, followed by the

control architecture that will allow the units to cooperatively provide the specified capability on

the target locations.

 Five capability models were defined for this project– the capability for detection through

electro-optics and radar (above-water threats), the capability for detection via sonar (underwater

threats), the capability to interdict a surface vessel, and the capability to interdict a sub-surface

���

vessel. The interdiction capabilities will be addressed in later chapters. Herein, we discuss only

sensing capability.

33.2 Past Work

Evan A. Barnes demonstrated the effectiveness of the capability function in simulations and in

actual physical trials [7]. In his project, he utilized simple cameras as sensors and used the

Khepera II Mobile Robot, which is essentially a small test robot featuring a Motorola 68331,

25MHz processor, propelled by 2 DC brushed servo motors. Using various test beds, the robotic

swarm was able to provide the cooperative sensing capability required in all instances while

taking into account a myriad of secondary tasks, such as object avoidance and multiple

viewpoint positioning.

 Due to the complexity in cooperative control, requiring both unmanned surface vessels

(USVs) and unmanned underwater vehicles (UUVs), this Trident Scholar project will not involve

physical trials.

3.3 Capability for Surface Detection through Electro-Optics

Electro-optics (EO) makes use of the heat signatures radiating from targets in order to identify

them. This eliminates the need for an illuminating source and hence makes EO a very effective

surveillance, observation, and targeting system. Most USVs have at least one EO system

onboard to aid with detection and targeting.

 For the purpose of this project, due to the limitation on the availability of information, the

EO capability function was generated based on the system specifications of the TOPLITE III EO

that was developed by Rafael Systems for the Israeli Defense Force. The TOPLITE III EO is

mounted on the Protector USV and has been deployed by the Republic of Singapore Navy in

the Persian Gulf and the Gulf of Aden [8].

���

Figure 3.1: Rafael’s Toplite III Electro Optic

 Based on Johnson’s Criteria, we are able to find the minimum pixels required for the

detection of a boat and hence were able to properly define the capability function. Johnson’s

Criteria describes an image-domain approach to analyzing the ability of observers in order to

attain a measurement for performance requirements in terms of detection and recognition [9].

For the sake of this project, the capability function is defined as the probability of detecting a 12

meter by 1 meter target based on a side-view aspect in perfect visibility. Applying this criterion

to the EO system, 3 pixels are required in order to recognize the target. The equation for the

capability function is defined as follows, where (again), the value is a probability of detection of a

12m x 1m target:

�� � � � �

��������������������������������������� � �

���
�

�
�

���������������

���������
���
�

�

����������
� � � �

 (1)

where the Pixel_of_System refers to the number of pixels the sensor has, FOV refers to the

horizontal field of view of the sensor in radians, D refers to the distance of the swarm unit to the

point where the capability is desired and Req_Pixels refers to the number of pixels required for

recognition as laid out in Johnson’s Criteria. H refers to the distance to the horizon.

Effectively, this capability function is based on the probability of detection as determined

by the resolution of the system, which is in turn a function of D. However, if the distance to the

���

object is past the horizon, represented by H, it would be impossible for the EO to detect the

ship. Hence, this accounts for the sudden drop of capability to zero past a certain point.

 Based on this equation, a visual representation of how the capability delivered varies

over a certain distance is as shown in Figure 3.2.

Figure 3.2: Capability Being Delivered as a Function of Distance for the TOPLITE EO

(Capability is defined as the probability of detection for a 12m x 1m profile)

Once the capability of an individual swarm unit equipped with an EO wa5s defined, the

next step was to provide and analyze this capability from a 3-dimensional perspective. Most

USVs have the ability to rotate their EO in order to search the surroundings for target. While this

rotation of the EO is not instantaneous, this is hard for the capability function to model since the

search pattern of the EO is erratic and does not follow a fixed pattern. However, the time

constants associated with a full sweep of the EO are much, much smaller than the time

constants associated with surface threats. As such, without loss of generality, the EO capability

is assumed to be omnidirectional. Taking that into account, the “capability volcano” of the EO,

assuming full radial coverage, is as follows in Figure 3.3 and Figure 3.4.

���

Figure 3.3: 3D Representation of Capability Delivered for the TOPLITE EO

Figure 3.4: Overhead View of Capability Delivered for the TOPLITE EO

���

33.4 Capability for Surface Detection through Radar

USVs often come equipped with radars in order to further enhance their detection, identification

and targeting capability. Radars utilize radio waves in order to determine the range, altitude,

direction or speed of objects. By transmitting and “bouncing radio waves” off our target object,

we can obtain information about targets in range of the system. Due to the ability to detect

targets despite poor visibility, radars have proven to be a valuable assets onboard USVs.

 The radar unit selected for the capability model herein is a commercial off-the-shelf

(COTS) Telephonics RDR-1700A [��]. The RDR-1700Aa is a lightweight, X-band, and 360-

degree search radar. While it is mainly designed for fixed or rotary-wing aircraft, it can also be

utilized by marine vessels in order to conduct patrol, surveillance, rescue and precision terrain

mapping. The RDR-1700A is as shown in Figure 3.5.��

Figure 3.5: Telephonics RDR-1700A Radar System

���

Due to the myriad of factors that influences the radar’s probability of detection, there is a

certain complexity in attaining the capability function. However, by utilizing the signal-to-noise

ratio in the radar range equation [��] along with some applied statistics [��], the radar detection

capability function is defined as follows:

where �� is the peak transmit power in watts, �� is the gain of the transmitter in decibels, �� is

the gain of the receiver in decibels, and � is the wavelength in meters of the transmitted radio

wave. These are all variables that are defined by the radar itself. The variable R represents the

distance from the radar to the target while � is the radar cross section of the target – assumed

to be 12 square meters for the purpose of this project.

Through the use of Marcum’s Q-function, Equation 3 gives us the probability of detection

as a function of the signal-to-noise ratio (SNR) as well as the probability of false alarm (pfa) [12],

which is assumed to be 0.01. �� is a modified Bessel function that accounts for the signal

processing. Based on these equations, we obtain the visual representation of the capability over

distance in Figure 3.6.

��� � �
��������

�

��������
 (2)

� � ������ ���� � � ����
������������

�������������

�
�
���

�

����������� (3)

�	�

33.5 Capability for Sub-Surface Detection through Active Sonar

Sonar is a technique where sound waves are utilized in order to navigate, communicate, or

detect objects under the surface of the water. An active sonar works by propagating sounds

waves via a source that is usually onboard the USV. As acoustic impulses hit the target, they

get deflected back to the receiver for analysis. Despite its simplistic nature, sonar remains one

of the best and most reliable techniques for sub-surface detection.

 Most USVs are equipped with side scan sonar in order to fulfill the task requirements of

underwater mapping and detection of mines. However, for the purpose of this research project,

each USV must be equipped such that it can detect submarines (and other USVs), as they

present the most dangerous threat to the protected asset from the sub-surface domain. For this

purpose, an active sonar is best suited for the requirements of the mission.

 Similar to the radar, the active sonar’s ability to detect a target is a function of both the

signal-to-noise ratio (SNR) and the probability of false alarm (pfa). The equations governing the

capability function is shown in Equation 4, 5 and 6 [��], based on a target modeled as a sphere

of 10m radius.

�������� � ��� � ��� � �� (4)

��� � ���
�������

�� (5)

� � � ���� ��� � ����
�

�

���
�
��

�

������������� ���
� (6)

 SL refers to the source level of the sonar in decibels (dB). This is the strength of the

sonar transmission and is a fixed value dependent on the type, efficiency and power of the

sonar used. TL refers to the reduction in signal intensity, given in decibels (dB). TL is therefore a

function of range and frequency and is based on the assumption of cylindrical spreading [14].

�
�

TS is the target strength which represents the echo returned by an underwater target in

decibels. Based on the equations above, the capability plot of a 1.5 kHz sonar is obtained in

Figure 3.9.

Figure 3.9: Capability Delivered for Sonar with f = 1.5KHz, assuming a target sphere of

10m radius.

Given that sonars operate in the sub-surface domain, the 3D representation of the

capability cannot be rendered, but it is again assumed that the system is omnidirectional. In the

case of a sonar, this means sensing occurs across the full 3D space (underwater) with

capability defined merely by distance from the unit.

���

of capability desired by the user, the primary controller will utilize the proportional control and

the Moore-Penrose pseudoinverse of the Jacobian to deliver the capability desired.

44.2 Controller Matrices

The controller matrices are the core of the system, and are designed to allow easy mapping

between the desired capability and allowable motions of the units [3]. The initial matrices for the

system is as defined below, where we are assuming that the units are position-controllable on a

scale sufficient to not require any more in-depth kinematics:

Swarm State = q =

��
��
��
�

��
��
��

 (7)

Capability Desired =
���� ���� ���� ����
�������� ������� ������� ���������

���� ���� ���� ����

 (8)

Current Capability = � � =
��
�

��

 (9)

Equation 7 defines the swarm state which provides the x, y and z location of every unit

within the swarm where n is the number of units in the swarm. Equation 8 lists the capability

desired at m specified target locations (columns 2 – 4 define the target points) while Equation 9

provides the current capability on the m points. The capability is a function of the swarm state

since the capability provided to the target depends on the distance the swarm unit is away from

the desired target location and how many units possess appropriate capability.

���

44.3 Overall Capability

Since the capability function is calculated for each unit within the swarm, it is not sufficient to

provide the individual capability at a given point. The capability function is a direct reflection of

the probability of detection; hence, the overall capability at a given point can be calculated using

the law of total probability [��]. The overall capability is defined as the probability that the target

will be detected by at least one unit.

Overall Capability = � � � ��� � �� � ����� � � � � � �� �� �� �� (10)

where �� is the probability of detection of a target by unit i. Hence, the overall capability can be

calculated based on equation above.

Figure 4.2: MATLAB Code to Calculate Overall Capability

 Figure 4.2 shows the above equation translated into MATLAB code. The capability

parameter refers to the individual capability a unit provides at the target capability position

defined by i while n refers to the amount of units in the swarm.

���

44.4 Jacobian Matrix

The controller now has the ability to track every unit’s position through the Swarm State matrix

as well as the current capability provided in the Current Capability matrix. However, it lacks the

connection between the task (desired changes in capability) and the current swarm state. The

Jacobian matrix thus provides a relationship between the capability and the kinematics of the

swarm. The Jacobian matrix is represented in Equation 11 and is effectively a first order

derivative of the capability function with respect to the individual state variables. This represents

how a change in the X, Y or Z position of each unit of the swarm unit would affect the capability

at the target point.

� �

���

���

���

���

���

���

�
���

���

���

���

���

���

����

�
���

���

���

���

� �

�
���

���

���

���

���

���

���

���

���

� � (11)

 In Equation 11, n refers to the number of units within the swarm while m refers to the

number of target locations where capability is defined. Due to the complexity of the partial

derivatives of the capability function, the Jacobian function in MATLAB is utilized to calculate the

Jacobian matrix for the swarm, with the results excluded for brevity.

4.5 Primary Controller Equations

Using the definition of the Jacobian matrix, a change in capability can be calculated based on

the motion and kinematics of the units within the swarm according to Equation 12 as follows:

��
�

��

� � �

��
��
��
�
��
��
��

 (12)

���

 The controller ultimately needs to move the units within the swarm, and the above

equation is not sufficient to provide a control equation for the primary controller. Therefore, the

inverse of the Jacobian must be utilized. However, it is key to note that the Jacobian matrix is

not necessarily a square matrix. As such, the Moore Penrose pseudo-inverse of the Jacobian

matrix has to be taken as follows:

�� � ��������� (13)

 Utilizing both Equation 12 and 13 and a proportional gain controller, one can now derive

the control for the motions of the units within the swarm as follows in Equation 14.

� �

��
��
��
�
��
��
��

� � �� �

��
�

��

� � ������

����
�

����
� �

��
�

��

�� (14)

 Equation 14 effectively translates into the block diagram in Figure 4.1. By solely utilizing

the primary controller, the swarm is able to provide capability on target, as will be seen in the

simulations in Chapter 6. It is important to note that the controller now solely uses a system-

theoretic approach where the individual swarm units lack any intelligence in the form of decision

making abilities.

���

CCHAPTER 5 – SECONDARY SWARM CONTROLLER

5.1 Overview

With the primary controller, the swarm utilizes the systems-theoretic approach in order to attain

the capability desired. However, the units within the swarm lack any intelligence in the sense

that they do not have any sort of decision making ability at all. In order to introduce a certain

level of intelligence into the swarm units, we incorporate behavioral methods into the controller,

effectively making it a hybrid controller [��].

 Hybridization of the controller again relies on the analogy to a redundant robotic

manipulator. Recall, a redundant robotic manipulator is characterized by having more joint

space degrees of freedom than there are task space degrees of freedom [3]. For the swarm

under consideration, each unit will provide two (in the case of a USV) or three (in the case of a

UUV) degrees of freedom, while each capability target point will define one task space degree

of freedom. The primary controller uses all of the units to achieve the desired capability, but if

there are more unit degrees of freedom than there are capability target points, the system has

an infinite number of configurations that will accomplish the desired capability. The extra

degrees of freedom can be controlled using a secondary method to achieve additional goals

under the behavior-based approach. Ultimately, this allows the controller increased flexibility in

fulfilling the capability desired.

5.2 Secondary Objectives

Since the control system is able to take into account behavioral control through the addition of a

secondary (redundancy-based) control approach, it is important to consider the secondary

objectives for the swarm to achieve.

���

generated from the behavioral control within the units in the swarm. Artificial potential field

theory will be utilized to generate this vector and will be elaborated in Chapter 5.3.

5.3 Artificial Potential Field Theory

Artificial potential field (APF) techniques draw from potential field theory concept in physics, and

are used in mobile robotics extensively. Controls are developed to force a robot to behave as a

charged particle moving in a potential field, where an attractive force is placed at a target

location and repulsive forces are placed around obstacles [17]. This effectively creates a vector

field under which an end-effector or a swarm unit would move, skirting around obstacles and

moving toward a target location. An example of how artificial potential field works is as seen in

Figure 5.3

Figure 5.2: Example of Artificial Potential Field [7]

 For the purpose of this project, the following repulsive vector was used to achieve inter-

unit collision avoidance (no attractive vector is used at this point).

�	�

������� � ������� � ���
�

�����	��
�

�

��������
�������� (16)

������� � ������� � ��
�

�����	��
�

�

��������
��� � (17)

����������������
��
��

 In the equations above, the repulsive vectors generated are for a 2D system. K is a gain

used to control the repulsive vector, while distance refers to the distance between the target and

the unit and safezone refers to the distance to the obstacle at which the secondary repulsive

vector will start to be applied. Depending on how ��� and �� is defined, ������� and ������� can

be utilized for avoiding obstacles, avoiding other units within the swarm or even to avoid the

entire surface of the water for underwater vessels. K is the control gain for the system and can

be manipulated to control how much influence the secondary control have on the overall

system. The parameter distance refers to the distance the swarm is away from the obstacle or

unit to be avoided while safezone is a defined parameter used to control the distance the swarm

unit is to avoid the obstacle or unit by. Similarly, Equations 18, 19 and 20 are the repulsive

vector generated for a 3D system

����� � ����� � ��
�

�������	
�

�

��������
������� � ��� �� (18)

����� � ����� � ���
�

�������	
�

�

��������
������ � � ����� (19)

����� � ����� � ��
�

�������	
�

�

��������
������� � ��� �� (20)

������������
��
�

�����������
��
�

�����������
��
�

���

CCHAPTER 6 – SIMULATION FOR SURFACE VESSELS

6.1 Overview for Simulation

The simulation for the swarm control was carried out in MATLAB, a multi-paradigm numerical

computing environment that was developed by MathWorks. The goal of the simulation phase

was to design and modify the controller such that it suits the practicality of whatever aspect the

mission needs in real-time. However, simulations are limited both in terms of software and

hardware. As such, several assumptions were made.

Firstly, the simplifying assumption is made that the swarm unit is holonomic in nature.

Holonomic vehicles are defined by the fact that all of their degree of freedom are controllable

[18]. Under this definition, a real-world USV or UUV faces non-holonomic constraints, as they

are not able to move horizontally without moving in the forward or reverse direction. While most

vehicles are non-holonomic in nature, the above assumption can still hold valid if the state to be

controlled is defined as the position of a point on the vehicle that is off the common

wheel/thruster axis [19]. Additionally, the scales involved in the simulation are significantly larger

than the turning radii of the units (tens of nautical miles versus tens of meters), making the

short-distance maneuvering control of little significance in the performance of the overall

system.

 Secondly, we assume that there are sensors aboard the USVs or UUVs that are able to

detect the obstacles or each other from a certain distance as defined by the safezone variable in

Equations 16 to 20. Based on these equations, the repulsive vector generated from the artificial

potential field would not take into effect until the unit enters the safezone. This assumption is

reasonable given that the safe zone can be defined such that it falls under the detection range

of the sensors that are utilized.

���

Figure 6.6: Change in Capability Over Time for Four Unit Swarm

 While the swarm did manage to meet the desired capability as observed in Figure 6.6, it

did so at the risk and peril of ignoring the obstacles while colliding with each other in the

process. Due to the fact that the swarm units starting position were so close to each other, the

change in the Jacobian pseudoinverse resulted in the swarm units following almost the same

path as observed in Figure 6.3

66.3 Simulation with Hybrid Control

Now that the primary control has been shown to be working as intended, the next step was to

incorporate the secondary control into the controller. This allows the swarm to have unit level

intelligence and exhibit some level of behavioral control. Simulations were carried out for the

exact same scenario as that of Figure 6.3 in order to contrast the difference between the

controls. The result of the simulation is as seen in Figure 6.7.

���

Figure 6.9: Capability Delivered Over Time for Hybrid Control

As observed in Figure 6.8, the immediate action for the swarm was to spread out such

that they avoid any risk of collision. This adheres to one of the secondary objective laid out in

Figure 5.1. Furthermore, the swarm units successfully navigated around the obstacles as

observed in Figure 6.7. All secondary tasks were achieved without comprising the final

capability delivered. However, as observed in Figure 6.9, the capability delivered was not as

stable or smooth as that in Figure 6.6 due to the behavioral control introduced into the system,

although this is merely a numerical artifact caused by the integration routine and very high

gains.

���

CCHAPTER 7 – SIMULATION FOR SUB-SURFACE

7.1 Overview

Thus far, the simulations have proved successful with regards to accommodating the secondary

objectives while still achieving the primary objectives for USV systems. The simulations now

shift to the sub-surface where there is an added dimension to consider. This complicates the

coding process. However, the fundamentals of the control still remain the same.

Similar to the simulations done on the USVs, the UUVs undergo simulations to show that

the secondary control indeed does have the desired effect on the system by contrasting the

primary control with the hybrid control.

 Furthermore, for the sub-surface simulations, the control gain for the primary control,

����, was set at 0.09 while the control gain for the secondary control, ����, was set at 45000.

The safezone for obstacle and unit avoidance was set to 100 meters while the gain for the

artificial potential field vector was set to 1200. The gains were obtained experimentally and

based on observation on the swarm’s performance. Furthermore, these gains were chosen in

order to ensure that the movement of the swarm units be as realistic as possible.

7.2 Simulation with Primary Control

The simulation was first defined for a swarm of 3 UUVs, with their starting positions close to

each other such that a collision would inevitably occur. Furthermore, 2 obstacles were set into

the path of the UUVs. Utilizing just the primary control, the results of the simulation is as

portrayed in Figure 7.1 and 7.2

�
�

Figure 7.3: Capability Delivered over Time for Sub-Surface Primary Control of 3 UUVs

 As can be seen in Figure 7.1 and 7.2, the swarm initially started with all units at the

same starting position, but made no attempt to spread out in order to avoid collision.

Furthermore, UUV 2 and UUV 3 mostly followed the same path in order to deliver the required

capability. The UUVs also made no attempt to avoid the obstacles. However, at the end of the

simulation, the capability delivered was as desired. Therefore, the primary control has effectively

performed the objective defined for that aspect of the controller.

77.3 Simulation with Hybrid Control

Incorporating the secondary control into the system, we expect the UUVs to achieve the

secondary objectives in Figure 5.1. The simulations results are as shown in Figure 7.4 and 7.5.

���

Figure 7.6: Capability Delivered over Time for Sub-Surface Hybrid Control of 3 UUV

 As can be seen in Figure 7.5 and 7.6, the swarm’s secondary control enabled the swarm

units to avoid each other as well as the obstacles. Most notably, UUV 2 and UUV 3 did not

follow the same path but instead actively tried to keep a distance of 100 meters away from each

other due to a repulsive vector generated from APF theory as mentioned Chapter 5.3. In Figure

7.6, capability desired was achieved in the relatively same time frame as the primary control.

Hence, the secondary control not only fulfills the secondary objectives but is effective as well.

���

CCHAPTER 8 – COMBINED SIMULATION

8.1 Overview

The simulations now combine the USVs with the UUVs in order to provide some cooperative

element to the hybrid swarm. Two hybrid controllers were defined separately for the USVs and

the UUVs. However, included in the secondary control was an avoidance behavior based on

APF for the USVs and the UUVs if they strayed too close to each other. Therefore, this system

assumes that the position of the UUVs and USVs are known to each other via measurement

using the primary sensors as well as explicit communications. This ties in further into

cooperative control which will be explored in later portions of the project.

Both the primary controller and then the hybrid controller were implemented separately

with both USVs and UUVs in order to contrast the difference between the two and demonstrate

the effectiveness of the hybrid control. Furthermore, the swarm environment utilized in these

simulations differs from the simulations of Chapter 6 and Chapter 7 in order to show the

adaptive and flexible nature of the hybrid control in dealing with an unknown environment.

The gains used in this simulation were identical to the gains used as mentioned in

chapter 6.1 and 7.1.

8.2 Simulation with Primary Control

In this simulation, 3 UUVs and 2 USVs with two positions where capabilities are desired is

portrayed in Figure 8.1. Furthermore, obstacles were placed around the environment, and the

USVs and UUVs started relatively close to each other in order to contrast the effect of the hybrid

control in fulfilling the secondary objectives. The result of the simulation utilizing only the primary

control is as follow in Figure 8.1 and 8.2.

���

Figure 8.3: Capability Delivered over Time for 4 USVs and 3 UUVs

 As can be seen, the capability desired was met and delivered by the swarm. However,

the swarm made no effort to avoid obstacles or separate the units to avoid wasted capability

and collisions. Furthermore, some of the USVs and UUVs followed the same path in order to

deliver the capability. In order to achieve the secondary objective, the hybrid controller was

implemented for the full swarm, as seen in the next section.

88.3 Simulation with Hybrid Control

In the hybrid control, the simulation environment was set to be the same as that in the primary

control in order to contrast the difference between the two controllers. Most significantly in this

simulation, the USVs and UUVs must move such that they take into account each other’s

position and actively attempt to avoid each other. The secondary objectives in this swarm are

similar to the objectives as shown in Figure 5.1. Figure 8.4 to Figure 8.7 shows the result of the

simulation with the hybrid controller.

���

As seen in Figure 8.4, through the secondary behavioral control, the swarm units

alternated their speed such that they spread out apart from each other in order to prevent

collision. Furthermore, with the hybrid control introduced into the system, the swarm units

maintained a certain safe distance apart from each other while ensuring that they avoided the

obstacles that were placed in their path as seen in Figure 8.5 and Figure 8.6. Finally, the

secondary control did not affect the primary task, which was to deliver the required capability as

seen in Figure 8.7. Overall, the hybrid control proves successful for a swarm of USVs and UUVs

working cooperatively together.

�	�

CCHAPTER 9 – COOPERATIVE LOCALIZATION OF UUVS

9.1 Overview

Localization of vehicles beneath the surface presents a very challenging problem given that

active localization in the form of Global Position Systems (GPS) is not available in the sub-

surface domain. As such, UUVs operating on their own typically rely on inertial navigation

systems (INS) based on accelerometers and rate gyros to give the system a sense of where the

unit is located in some reference frame. However, there is an innate problem that is typically

associated with INS – even the best INS has noise-induced error that compounds over time.

This is due to the lack of external reference, as the system is effectively “flying blind” under the

water. It is estimated that typical navigation errors range from 0.5% to 2% of distance traveled,

even when the UUV is operating with a Doppler Velocity Log [20] that can provide reference to

the environment as motion occurs.

 The traditional form of active localization that is typically utilized by UUVs is achieved via

static beacons that are able to communicate with the units in order to provide navigational and

positional information. This technique, usually called long baseline (LBL) localization, has

limitations in that it severely limits the area of operations of the UUVs, restricting them to

operate near the beacons. Furthermore, this requires infrastructure preparation in the theater of

operations, which may not always be feasible. However, LBL does provide the basic concept of

how any form of active localization underwater would work – that is, through a third party

providing positional and navigational data. Figure 9.1 shows the basic workings of the long

baseline technique where a submersible vessel is working with static beacons. These static

beacons transmit positional data based on their own GPS measured or a priori known position

in order to produce a “fix” on the submersible vehicle.

���

computed position still remains relatively accurate. This shows the effectiveness of this CN-

algorithm in localizing the UUVs. Moving forward, this CN-system is to be implemented as a

secondary objective into the developed swarm controller.

99.3 Implementation of Cooperative Navigation

The UUVs were assumed to have an INS drift of 1.6% for every second of travel underwater.

This drift value is dependent on the exact model of INS on the UUV, and can be adjusted

accordingly for any system. The important realization is that the drift may result in inaccurate

positioning of the UUV units and therefore result in a degraded capability, as can be seen in

Figure 9.4.

Figure 9.4: Capability Degradation of UUVs

 The initial capability provided by the UUV is given by the grey circle. However, due to the

drift associated with the INS, several possible positions of the UUV are given by the different red

triangles. As there is no certainty as to the position of the UUV, the worst case scenario must be

assumed and therefore, the final capability provided to the system is given by the orange circle.

���

Utilizing the current control, the most logical method in implementing CN was to make

use of the secondary control to manipulate the UUVs to find a USV in order to get localized

when needed. Furthermore, it is important that in this process that the capability provided to the

system remains at its most optimal. This is done by adding in an attractive vector that would pull

the UUVs to the USV to get localized when a certain threshold is met, but otherwise to allow

them to move as dictated by the standard hybrid controller.

As this paper mainly concerns itself with the control of the USVs and UUVs, the control

does not concern itself with the actual intricacies of the CN-algorithm. Furthermore, we simply

assume that localization happens when the UUVs come within a 500m radius of the USVs,

which is the maximum range of the acoustic modem. As for capability degradation, utilizing the

INS drift of 1.6%, the worst case position of the UUVs were assumed in order to calculate the

current capability provided to the system.

9.4 Simulation without Cooperative Navigation

The first simulation was done without utilizing CN in the system. Instead, an INS drift based as a

function of time was assumed and no mitigation was provided. Over time, the capability of the

UUVs degraded. Furthermore, the control system would take into account the drift-based

degradation of capability and correct unit positions until desired capability was deemed to have

been provided to the system under the worst-case scenario. Figure 9.5 shows the environment

that the simulation was carried out in and Figure 9.6 shows the end state of the simulation.

���

worst-case scenario. That is, the controller utilizes the estimated position of the unit in the

control, but computes the capability as if the unit were in the worst possible position, based on

the estimated uncertainty. Eventually, the capability degrades to such an extent that the control

system simply attempts to place the UUV right on the position where capability is desired. At

this position, the system provides the maximum available degraded capability and therefore, the

resulting capability provided to the system is merely a function of the INS drift. That is, the

controller attempts to place the unit on the target, but recognizes that the actual position may be

far away and computes delivered capability based on that potential position. Eventually, that

degraded capability drops below the desired value. Figure 9.7 shows the relation between time

and the capability provided. The noise is caused by the localization error and uncertainty

mitigation.

Figure 9.7: Capability Delivered Over Time without CN

�	�

As the simulations have shown, the UUV would move back to the USV in order to get

localized and then after, it would replace the position of the UUV which has the most positional

uncertainty. This cycle continues throughout the rest of the simulations, with one UUV

constantly moving back to a nearby USV to get localized while the rest of the UUV provides the

required capability. The only code that governs this behavior is the attractive vector incorporated

into the secondary controller.

An analysis on the capability over time is as shown in Figure 9.13:

Figure 9.13: Capability Delivered over Time with CN

Overall, the incorporation of cooperative navigation into the secondary controller helps

keep in check the positional uncertainty resulting in a stop to the capability degradation. As

such, the control is able to provide a higher amount of capability to the system.

�
�

CCHAPTER 10 – INTERDICTION

10.1 Overview

Under the current framework provided by the control system, there is capability for the swarm to

detect incoming surface and sub-surface threats. However, the system lacks interdiction

capability, which is definitely a requirement of vessels conducting asset protection mission. This

portion of the research provides a simple interdiction system and examines how the rest of the

swarm reacts with respect to the capability it provides after interdiction takes place.

10.2 Implementation of Interdiction

Ideally, preparation for interdiction should be based on a capability, which is in turn dependent

on the hardware associated with the UUVs and USVs. However, given the complication

associated with calculating an accurate equation that encapsulates probability of interdiction, it

is assumed that interdiction is to simply have the UUV or USV intercept the target on a collision

path. Interdiction is achieved for our simulations when the swarm unit reaches some nominal

minimum distance from the target (which would be dictated by the exact interdiction method and

hardware onboard the units).

 For interdiction, the control forces the UUV closest to the target to move towards the

incoming trajectory on a collision path, using an attractive vector. Interdiction takes precedence,

thereby extracting the selected unit completely from the swarm’s control. From the point that the

unit detects the target and starts moving towards it, the interdicting UUV or USV still provides

detection capability. However, once interdiction occurs, it is assumed that the UUV perishes

	��

CCHAPTER 11 – CONCLUSION AND FUTURE WORKS

11.1 Contributions

In this work, a new method for cooperative control of unmanned surface vessels (USVs) and

unmanned underwater vehicles (UUVs) has been demonstrated for the task of asset protection.

Fundamental to this control is development of a mission-based capability concept that is

grounded in realistic sensing limitations and functionality. Further, incorporation of cooperative

localization was achieved using the surface vessels as aids to navigation for the underwater

systems, reducing the need for surfacing to achieve localization. Finally, interdiction of targets

was achieved using the same framework, with the system adapting easily to the reduction in

overall capability when a unit went offline.

The primary contributions of this work are the implementation of a mission-capable

hybrid control, combining systems-theoretic and behavioral control in a multi-domain framework.

Furthermore, the group of UUVs and USVs were able to navigate an unknown environment

successfully and position themselves such that the desired capability was met, no collisions

occurred, and underwater units improved their localization performance using the surface

vessels. This controller demonstrates an integrated, flexible, adaptable system capable of

coordinating USV and UUV assets, and is applicable to a wide variety of missions with little

modification.

	��

111.2 Future Works

Many autonomous vehicles have been successfully deployed in recent years. However, not

many of these autonomous systems work cooperatively in different domains and attempt to

synergize with each other. The effectiveness and adaptability shown in this form of controller

does indeed seem truly promising and, in the long run, may prove to be a major keystone for

swarm control.

 In the short run, future work could build on this form of control in order to further enhance

the cooperative element between USVs and UUVs. Furthermore, practical trials utilizing the

necessary hardware and based on this form of control could indeed prove fruitful in driving

research in the field of swarm control as well.

 There is no doubt that this research is promising and has tremendous potential to impact

the world of robotics. With the necessary control system, a robust, effective and adaptable

swarm will be able to fulfill a set of secondary missions while ensuring that the primary pre-

requisites are met as well.

		�

AAPPENDIX A –CODE FOR SIMPLE SURFACE PRIMARY SIMULATION

% Input Variables
cap desired 0.95;
xd 2000;
yd 2000;

% Global variables
res req 3; % Required pixels for detection of Small Boat via EO
height 4.5;
horizon (sqrt(17*height)+sqrt(17*height)) * 1000;

% Create USVs
x1 1;
y1 1;
x2 50;
y2 50;
swarmstate [x1;y1;x2;y2];
x1 plot(1) 1
y1 plot(1) 1
x2 plot(1) 50
y2 plot(1) 50

for t 1:1:50

 % Capability Calculations
 if ((640/(2*sqrt((yd y1)^2 + (xd x1)^2)*tand(24/2))) > 3) & ((640/(2*sqrt((yd y2)^2 +
(xd x2)^2)*tand(24/2))) > 3)

 c1 1 0.0000000000000001*sqrt((yd y1)^2 + (xd x1)^2);
 c2 (1 0.0000000000000001*sqrt((yd y2)^2 + (xd x2)^2));
 syms y1s y2s x1s x2s;

 jacobian s jacobian((1 0.0000000000000001*sqrt((yd y1s)^2 + (xd x1s)^2))*(1
0.0000000000000001*sqrt((yd y2s)^2 + (xd x2s)^2)) +(1 0.0000000000000001*sqrt((yd y1s)^2
+ (xd x1s)^2))*(1 (1 0.0000000000000001*sqrt((yd y2s)^2 + (xd x2s)^2))) + (1
0.0000000000000001*sqrt((yd y2s)^2 + (xd x2s)^2))*(1 (1 0.0000000000000001*sqrt((yd
y1s)^2 + (xd x1s)^2))),[x1s,y1s,x2s,y2s]);
 jacobian subbed subs(jacobian s,[x1s,y1s,x2s,y2s],[x1,y1,x2,y2]);
 jacobian double(jacobian subbed); % CONVERT SYMBOLS BACK TO NUMBERS
 elseif (640/(2*sqrt((yd y1)^2 + (xd x1)^2)*tand(24/2))) > 3
 c1 (1 0.0000000000000001*sqrt((yd y1)^2 + (xd x1)^2));
 c2 sin((pi/2)*(640/(2*sqrt((yd y2)^2 + (xd x2)^2)*tand(24/2)))/(3));
 syms y1s y2s x1s x2s;

 jacobian s jacobian((1 0.0000000000000001*sqrt((yd y1s)^2 + (xd
x1s)^2))*sin((pi/2)*(640/(2*sqrt((yd y2s)^2 + (xd x2s)^2)*tand(24/2)))/(3))+(1
sin((pi/2)*(640/(2*sqrt((yd y2s)^2 + (xd x2s)^2)*tand(24/2)))/(3)))*(1
0.0000000000000001*sqrt((yd y1s)^2 + (xd x1s)^2))+(1 (1 0.0000000000000001*sqrt((yd
y1s)^2 + (xd x1s)^2)))*sin((pi/2)*(640/(2*sqrt((yd y2s)^2 + (xd
x2s)^2)*tand(24/2)))/(3)),[x1s,y1s,x2s,y2s]);
 jacobian subbed subs(jacobian s,[x1s,y1s,x2s,y2s],[x1,y1,x2,y2]);
 jacobian double(jacobian subbed);

 elseif (640/(2*sqrt((yd y2)^2 + (xd x2)^2)*tand(24/2))) > 3
 c2 (1 0.0000000000000001*sqrt((yd y2)^2 + (xd x2)^2));
 c1 sin((pi/2)*(640/(2*sqrt((yd y1)^2 + (xd x1)^2)*tand(24/2)))/(3));
 syms y1s y2s x1s x2s;

 jacobian s jacobian(sin((pi/2)*(640/(2*sqrt((yd y1s)^2 + (xd
x1s)^2)*tand(24/2)))/(3))*(1 0.0000000000000001*sqrt((yd y2s)^2 + (xd x2s)^2)) + (1 (1
0.0000000000000001*sqrt((yd y2s)^2 + (xd x2s)^2)))*sin((pi/2)*(640/(2*sqrt((yd y1s)^2 + (xd
 x1s)^2)*tand(24/2)))/(3)) + (1 sin((pi/2)*(640/(2*sqrt((yd y1s)^2 + (xd

	
�

x1s)^2)*tand(24/2)))/(3)))*((1 0.0000000000000001*sqrt((yd y2s)^2 + (xd
x2s)^2))),[x1s,y1s,x2s,y2s]);
 jacobian subbed subs(jacobian s,[x1s,y1s,x2s,y2s],[x1,y1,x2,y2]);
 jacobian double(jacobian subbed);

 else
 c1 (sin((pi/2)*(640/(2*sqrt((yd y1)^2 + (xd x1)^2)*tand(24/2)))/(3)));
 c2 (sin((pi/2)*(640/(2*sqrt((yd y2)^2 + (xd x2)^2)*tand(24/2)))/(3)));
 syms y1s y2s x1s x2s;

 jacobian s jacobian(((sin((pi/2)*(640/(2*sqrt((yd y1s)^2 + (xd
x1s)^2)*tand(24/2)))/(3)))*(sin((pi/2)*(640/(2*sqrt((yd y2)^2 + (xd
x2s)^2)*tand(24/2)))/(3)))) + ((1 (sin((pi/2)*(640/(2*sqrt((yd y2s)^2 + (xd
x2s)^2)*tand(24/2)))/(3))))*(sin((pi/2)*(640/(2*sqrt((yd y1s)^2 + (xd
x1s)^2)*tand(24/2)))/(3)))) + ((1 (sin((pi/2)*(640/(2*sqrt((yd y1s)^2 + (xd
x1s)^2)*tand(24/2)))/(3))))*(sin((pi/2)*(640/(2*sqrt((yd y2s)^2 + (xd
x2s)^2)*tand(24/2)))/(3)))),[x1s,y1s,x2s,y2s]);
 jacobian subbed subs(jacobian s,[x1s,y1s,x2s,y2s],[x1,y1,x2,y2]);
 jacobian double(jacobian subbed);
 end

 % Overall Capability
 overall cap c1*c2 + c1*(1 c2) + c2*(1 c1);

 % Control Code
 jacob pinv pinv(jacobian);
 cdot 0.095*(cap desired overall cap);
 swarmstatedot jacob pinv*cdot;
 swarmstate swarmstate + swarmstatedot;

 x1 swarmstate(1);
 x2 swarmstate(3);
 y1 swarmstate(2);
 y2 swarmstate(4);

 x1 plot(t+1) swarmstate(1);
 y1 plot(t+1) swarmstate(2);
 x2 plot(t+1) swarmstate(3);
 y2 plot(t+1) swarmstate(4);
 cap(t) overall cap;
 line(t) cap desired;

end

% Plots
figure(1)
hold on
grid on
plot(x1 plot,y1 plot,'*')
plot(x2 plot,y2 plot,'r+')
plot(xd,yd,'^k')
xlabel('X Axis (m)')
ylabel('Y Axis (m)')
title('Simulation of Primary Control')

figure(2)
hold on
plot(0:49,cap)
plot(0:49,line)
xlabel('Time (s)')
ylabel('Capability Delivered')
title('Capability Delivered Over Time')
legend('Capability Delieverd','Capability Desired')

	��

AAPPENDIX B –CODE FOR SURFACE HYBRID CONTROL

% Input Variables
cap desired [0.95;0.95];
xd [4000;4000];
yd [1000;2000];

% Global variables
res req 3; % Required pixels for detection of Small Boat via EO
height 4.5;
horizon (sqrt(17*height)+sqrt(17*height)) * 1000;
vunit [0;0;0;0;0;0;0;0]

% Obstacles

x1 obs 2.5954e+03;
y1 obs 1.4982e+03;

x2 obs 1.7503e+03;
y2 obs 1.3404e+03;

x3 obs 702.8923;
y3 obs 788.8338;

obs mat [x1 obs;y1 obs;x2 obs;y2 obs;x3 obs;y3 obs]

% Create USVs
x1 150.2;
y1 150.2;
x2 150.1;
y2 150.1;
x3 150;
y3 150;
x4 149.999;
y4 149.999;

swarmstate [x1;y1;x2;y2;x3;y3;x4;y4];
x1 plot(1) x1;
y1 plot(1) y1;
x2 plot(1) x2;
y2 plot(1) y2;
x3 plot(1) x3;
y3 plot(1) y3;
x4 plot(1) x4;
y4 plot(1) y4;
syms c symbol x1s y1s x2s y2s x3s y3s x4s y4s
ss [x1s;y1s;x2s;y2s;x3s;y3s;x4s;y4s];

for t 1:1:700 % t time in seconds
 for i 1:1:length(cap desired) % i amount of capabilities desired

 vobst [0;0;0;0;0;0;0;0];

 % CALCULATE CAPABILITIES FOR EACH INDIVIDUAL VESSELS FOR SPECIFIC POINT
 for n 1:1:((length(swarmstate))/2) % n vessel number
 if sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2) 1)))^2)) >
horizon
 c(n) 100/((sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2)
1)))^2))));

 c symbol(n) 100/((sqrt(((yd(i) ss(n*2))^2) + ((xd(i) ss(((n*2) 1))))^2)));

 elseif ((640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2)
1)))^2)*tand(24/2))) > 3)

��

 c(n) 1 0.0001*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2)
1)))^2);

 c symbol(n) 1 0.0001*sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2) 1)))^2);
 else
 c(n) sin((pi/2)*(640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i)
swarmstate(((n*2) 1)))^2)*tand(24/2)))/(3));

 c symbol(n) sin((pi/2)*(640/(2*sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2)
1)))^2)*tand(24/2)))/(3));
 end
 end

 % CALCULATE OVERALL CAPABILITY
 capability(i) 0 ;
 cadd 1;
 for o 1:1:((length(swarmstate))/2)
 capability(i) capability(i) + c(o)*cadd;
 cadd (1 capability(i));
 end

 overall cap 0 ;
 cadd 1;
 for o 1:1:((length(swarmstate))/2)
 overall cap overall cap + c symbol(o)*cadd;
 cadd (1 overall cap);
 end

 % SUB CAPABILITY(SYMBOLS) INTO JACOBIAN
 jacobian s jacobian(overall cap,[x1s,y1s,x2s,y2s,x3s,y3s,x4s,y4s]); % calculate
jacobian matrix based on partial derivative of position 0f (x1, y1)...
 jacobian subbed
subs(jacobian s,[x1s,y1s,x2s,y2s,x3s,y3s,x4s,y4s],[swarmstate(1),swarmstate(2),swarmstate(3),swar
mstate(4),swarmstate(5),swarmstate(6),swarmstate(7),swarmstate(8)]);
 jaco mat(i,:) (double(jacobian subbed)); % final jacobian in numbers

 end

 % ADD IN OBSTACLE AVOIDANCE

 safezone 100;

 for n 1:1:((length(swarmstate))/2) % n vessel number
 objrepx 0;
 objrepy 0;
 for obs 1:1:((length(obs mat)/2)) % obs number of obstructions
 dist sqrt((swarmstate((n*2) 1) obs mat((obs*2) 1))^2 + (swarmstate((n*2))
obs mat((obs*2)))^2);

 if dist < safezone
 angle atan2((swarmstate((n*2)) obs mat((obs*2))),(swarmstate((n*2) 1)
obs mat((obs*2) 1)));
 objrepx objrepx + 4000*((1/dist) (1/safezone))*cos(angle);
 objrepy objrepy + 4000*((1/dist) (1/safezone))*sin(angle);
 end
 vobst rec(:,t) vobst;

 end
 vobst((n*2) 1) objrepx;
 vobst(n*2) objrepy;

 end

 % ADD IN UNIT AVOIDANCE

��

 safezone unit 100;

 for n 1:1:((length(swarmstate))/2) % n vessel number
 unitrepx 0;
 unitrepy 0;
 for o 1:1:((length(swarmstate))/2) % o number of vessels

 if n o
 vunit((n*2) 1) 0;
 vunit(n*2) 0;
 else
 dist unit sqrt((swarmstate((n*2) 1) swarmstate((o*2) 1))^2 +
(swarmstate((n*2)) swarmstate((o*2)))^2);

 if dist unit < safezone unit
 angle unit atan2((swarmstate((n*2)) swarmstate(o*2)),(swarmstate((n*2) 1)
 swarmstate((o*2) 1)));

 unitrepx unitrepx + 4000*((1/dist unit) (1/safezone unit))*cos(angle unit);
 unitrepy unitrepy + 4000*((1/dist unit) (1/safezone unit))*sin(angle unit);
 end
 end

 end
 vunit((n*2) 1) unitrepx;
 vunit(n*2) unitrepy;

 end

 % CONTROL LAW
 jacob pinv pinv(jaco mat);
 capability t transpose(capability);
 capability plot(t,:) capability;
 cdot 0.009*(cap desired capability t)
 [sizex, sizey] size(jacob pinv*jaco mat);
 swarmstatedot jacob pinv*cdot + 150*((eye(sizex,sizey) jacob pinv*jaco mat)*vobst) +
 150*((eye(sizex,sizey) jacob pinv*jaco mat)*vunit);

 % LIMITATIONS FOR SPEED
 for n 1:1:((length(swarmstate))/2)
 while abs(sqrt(((swarmstatedot((n*2) 1))^2) + (swarmstatedot(n*2)^2))) > 50
 if swarmstatedot((n*2) 1) > 0
 swarmstatedot((n*2) 1) 0.1*swarmstatedot((n*2) 1);
 else
 swarmstatedot((n*2) 1) 0.1*swarmstatedot((n*2) 1);
 end

 if swarmstatedot(n*2) > 0
 swarmstatedot(n*2) 0.1*swarmstatedot(n*2);
 else
 swarmstatedot(n*2) 0.1*swarmstatedot(n*2);
 end
 end
 end

 % CONTROL LAW (CONT'D)
 swarmstate swarmstate + swarmstatedot;

 x1 plot(t+1) swarmstate(1);
 y1 plot(t+1) swarmstate(2);
 x2 plot(t+1) swarmstate(3);
 y2 plot(t+1) swarmstate(4);
 x3 plot(t+1) swarmstate(5);
 y3 plot(t+1) swarmstate(6);
 x4 plot(t+1) swarmstate(7);
 y4 plot(t+1) swarmstate(8);

 cap 1(t) capability(1)
 cap 2(t) capability(2)

��

end

% PLOT
figure(1)
hold on
axis equal
grid on
plot(x1 plot,y1 plot,'b*')
plot(x2 plot,y2 plot,'y*')
plot(x3 plot,y3 plot,'g*')
plot(x4 plot,y4 plot,'k*')
plot(x1 obs,y1 obs,'rd','LineWidth',6.5)
plot(x2 obs,y2 obs,'rd','LineWidth',6.5)
plot(x3 obs,y3 obs,'rd','LineWidth',6.5)

plot(xd,yd,'^k')
xlabel('X Axis')
ylabel('Y Axis')
title('Simulation Run for t 700')

figure(2)
hold on
grid on
plot(1:length(cap 1),cap 1);
plot(1:length(cap 2),cap 2);
plot([1 length(cap 2)],[0.95 0.95]);

��

AAPPENDIX C – CODE FOR SUB-SURFACE HYBRID CONTROL

% Input Variables

cap desired U [0.95; 0.95];
xd U [4000; 800];
yd U [4000;2000];
zd U [400; 900];

% Global Variables

pfa 0.01; % Assuming Probablity of False Alarm as 0.01
sub 1 erfcinv(2*pfa);
f 150; % Frequency of Sonar
alpha (0.036*f^2)/(f^2 + 3600)+(3.2 * 10^ 7 * f^2);

% Obstacles

x1 obs u 1.8439e+03;
y1 obs u 1.0135e+03;
z1 obs u 21.6312;

x2 obs u 2.1409e+03;
y2 obs u 2.1409e+03;
z2 obs u 288.5518;

obs mat u [x1 obs u;y1 obs u;z1 obs u;x2 obs u;y2 obs u;z2 obs u;]
vobst u [0;0;0;0;0;0;0;0;0]
vunit u [0;0;0;0;0;0;0;0;0]

% Create USVs
x1 U 149;
y1 U 149;
z1 U 1;
x2 U 148.5;
y2 U 148.5;
z2 U 1.4;
x3 U 149.5;
y3 U 149.5;
z3 U 1.8;
swarmstate U [x1 U;y1 U;z1 U;x2 U;y2 U;z2 U; x3 U;y3 U;z3 U];
syms snr s magnitude s TL s x1u y1u z1u x2u y2u z2u x3u y3u z3u
ssu [x1u;y1u;z1u;x2u;y2u;z2u;x3u;y3u;z3u];
x1 plot u(1) x1 U;
y1 plot u(1) y1 U;
z1 plot u(1) z1 U;
x2 plot u(1) x2 U;
y2 plot u(1) y2 U;
z2 plot u(1) z2 U;
x3 plot u(1) x3 U;
y3 plot u(1) y3 U;
z3 plot u(1) z3 U;

for t 1:1:450
 for i 1:1:length(cap desired U)
 for n 1:1:((length(swarmstate U))/3) % n vessel number

 R sqrt((xd U(i) (swarmstate U(n*3 2)))^2 + (yd U(i) swarmstate U(n*3 1))^2
+ (zd U(i) swarmstate U(n*3))^2);
 R s sqrt((xd U(i) (ssu(n*3 2)))^2 + (yd U(i) ssu(n*3 1))^2 + (zd U(i)
ssu(n*3))^2);
 if R > 501
 pd(n) 1/R;

��

 pd symbol(n) 1/R s;
 else

 TL 10*log(R) + 30 + alpha*R; % Transmission Loss based on Cylindrical
Spreading
 TS 10*log(0.25*10^2); % Target Strength based on large sphere w/
10m radius
 SL 180; % Assuming Sonar Source Level of 180db
 snr SL 2*TL + TS;
 magnitude 10^(snr/10);
 fhandle @(x) exp(x.^2);
 pd(n) 0.5 * (2/sqrt(pi))*integral(fhandle,sub 1 sqrt(magnitude),Inf);

 TL s 10*log(R s) + 30 + alpha*R s;
 snr s SL 2*TL s + TS;
 magnitude s 10^(snr s/10);
 pd symbol(n) 0.5 * (2/sqrt(pi))*int(fhandle,sub 1 sqrt(magnitude s),Inf);
 end

 end
 % calculate overall capability
 capability u(i) 0;
 cadd u 1;
 for o 1:1:((length(swarmstate U))/3)
 capability u(i) capability u(i) + pd(o)*cadd u;
 cadd u (1 capability u(i));
 end

 overall cap u 0;
 cadd 1;
 for o 1:1:((length(swarmstate U))/3)
 overall cap u overall cap u + pd symbol(o)*cadd;
 cadd (1 overall cap u);
 end

 jacobian s u jacobian(overall cap u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u]); %
calculate jacobian matrix based on partial derivative of position 0f (x1, y1)...
 jacobian subbed u
subs(jacobian s u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u],[swarmstate U(1),swarmstate U(2),swarmsta
te U(3),swarmstate U(4),swarmstate U(5),swarmstate U(6),swarmstate U(7),swarmstate U(8),swarmstat
e U(9)]);
 jaco mat u(i,:) (double(jacobian subbed u)); % final jacobian in numbers

 end

 % ADD IN OBSTACLE AVOIDANCE

 safezone u 100;

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 objrepx u 0;
 objrepy u 0;
 objrepz u 0;
 for u 1:1:((length(obs mat u)/3)) % obs number of obstructions
 dist u sqrt((swarmstate U(n*3 2) obs mat u(u*3 2))^2 + (swarmstate U(n*3 1)
obs mat u(u*3 1))^2 + (swarmstate U(n*3) obs mat u(u*3))^2);

 if dist u < safezone u
 angle u alpha atan2((swarmstate U((n*3 2)) obs mat u((u*3
2))),(swarmstate U((n*3) 1) obs mat u(u*3 1)));
 angle u beta atan2((swarmstate U((n*3))
obs mat u((u*3))),(swarmstate U((n*3) 1) obs mat u(u*3 1)));
 angle u charlie atan2((swarmstate U((n*3))
obs mat u((u*3))),(swarmstate U((n*3) 2) obs mat u(u*3 2)));

 objrepx u objrepx u + 300*((1/dist u) (1/safezone u))*cos(angle u alpha) +
300*((1/dist u) (1/safezone u))*cos(angle u charlie);

��

 objrepy u objrepy u + 300*((1/dist u) (1/safezone u))*sin(angle u alpha) +
300*((1/dist u) (1/safezone u))*cos(angle u beta);
 objrepz u objrepz u + 300*((1/dist u) (1/safezone u))*sin(angle u beta) +
300*((1/dist u) (1/safezone u))*sin(angle u charlie);
 end

 end
 vobst u((n*3) 2) objrepx u;
 vobst u(n*3 1) objrepy u;
 vobst u(n*3) objrepz u;

 end

 % ADD IN UNIT AVOIDANCE

 safezone unit u 100;

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 unitrepx u 0;
 unitrepy u 0;
 unitrepz u 0;
 for o 1:1:((length(swarmstate U))/3) % o number of vessels

 if n o
 vunit u((n*3) 2) 0;
 vunit u((n*3) 1) 0;
 vunit u(n*3) 0;
 else
 dist unit u sqrt((swarmstate U(n*3 2) swarmstate U(o*3 2))^2 +
(swarmstate U(n*3 1) swarmstate U(o*3 1))^2 + (swarmstate U(n*3) swarmstate U(o*3))^2);

 if dist unit u < safezone unit u

 angle unit u alpha atan2((swarmstate U((n*3 2)) swarmstate U((o*3
2))),(swarmstate U((n*3) 1) swarmstate U(o*3 1)));
 angle unit u beta atan2((swarmstate U((n*3))
swarmstate U((o*3))),(swarmstate U((n*3) 1) swarmstate U(o*3 1)));
 angle unit u charlie atan2((swarmstate U((n*3))
swarmstate U((o*3))),(swarmstate U((n*3) 2) swarmstate U(o*3 2)));

 unitrepx u unitrepx u + 800*((1/dist unit u)
(1/safezone unit u))*cos(angle unit u alpha)+ 800*((1/dist unit u)
(1/safezone unit u))*cos(angle unit u charlie);
 unitrepy u unitrepy u + 800*((1/dist unit u)
(1/safezone unit u))*sin(angle unit u alpha)+ 800*((1/dist unit u)
(1/safezone unit u))*cos(angle unit u beta);
 unitrepz u unitrepz u + 800*((1/dist unit u)
(1/safezone unit u))*sin(angle unit u beta)+ 800*((1/dist unit u)
(1/safezone unit u))*sin(angle unit u charlie);

 end

 end
 vunit u((n*3) 2) unitrepx u;
 vunit u((n*3) 1) unitrepy u;
 vunit u(n*3) unitrepz u;

 end
 end

 % CONTROL LAW

 jacob pinv u pinv(jaco mat u);
 capability u t transpose(capability u);
 capability plot u(t,:) capability u;

��

 cdot u 0.09*(cap desired U capability u t);
 [sizex u, sizey u] size(jacob pinv u*jaco mat u);

 swarmstatedot u jacob pinv u * cdot u + 45000*((eye(sizex u,sizey u)
jacob pinv u*jaco mat u)*vobst u) + 45000*((eye(sizex u,sizey u)
jacob pinv u*jaco mat u)*vunit u);

 % Speed Limitations

 for n 1:1:((length(swarmstate U))/3)
 while abs(sqrt(((swarmstatedot u((n*3) 2))^2) + (swarmstatedot u((n*3) 1)^2) +
swarmstatedot u(n*3)^2)) > 30
 if swarmstatedot u((n*3) 2) > 0
 swarmstatedot u((n*3) 2) 0.5*swarmstatedot u((n*3) 2); else
 swarmstatedot u((n*3) 2) 0.5*swarmstatedot u((n*3) 2);
 end

 if swarmstatedot u((n*3) 1) > 0
 swarmstatedot u((n*3) 1) 0.5*swarmstatedot u((n*3) 1);
 else
 swarmstatedot u((n*3) 1) 0.5*swarmstatedot u((n*3) 1);
 end

 if swarmstatedot u(n*3) > 0
 swarmstatedot u(n*3) 0.5*swarmstatedot u(n*3);
 else
 swarmstatedot u(n*3) 0.5*swarmstatedot u(n*3);
 end
 end
 end

 swarmstate U swarmstate U + swarmstatedot u;
 for n 1:1:((length(swarmstate U))/3) % n vessel number
 if swarmstate U(n*3) > 0
 swarmstate U(n*3) 0;
 end
 end
 x1 plot u(t+1) swarmstate U(1);
 y1 plot u(t+1) swarmstate U(2);
 z1 plot u(t+1) swarmstate U(3);
 x2 plot u(t+1) swarmstate U(4);
 y2 plot u(t+1) swarmstate U(5);
 z2 plot u(t+1) swarmstate U(6);
 x3 plot u(t+1) swarmstate U(7);
 y3 plot u(t+1) swarmstate U(7);
 z3 plot u(t+1) swarmstate U(9);

 capability(t) capability u(1);
 capability 2(t) capability u(2);
end

figure(1)
hold on
grid on
plot3(transpose(x1 plot u),transpose(y1 plot u),transpose(z1 plot u),'c*')
plot3(transpose(x2 plot u),transpose(y2 plot u),transpose(z2 plot u),'gd')
plot3(transpose(x3 plot u),transpose(y3 plot u),transpose(z3 plot u),'ko')

plot3(xd U,yd U,zd U,'k^','LineWidth',2.0)
plot3(x1 obs u,y1 obs u,z1 obs u,'rd','LineWidth',6.0)
plot3(x2 obs u,y2 obs u,z2 obs u,'rd','LineWidth',6.0)

xlabel('X axis')
ylabel('Y axis')
zlabel('Z axis')
title('3D Simulations with Primary Control for 3 Unit Swarm')
legend('Path of USV 1','Path of USV 2', 'Path of USV 3', 'Target Positions','Obstacles')

figure(2)

	�

hold on
grid on
plot(1:length(capability),capability)
plot(1:length(capability 2),capability 2)
plot([1 length(capability)],[0.95 0.95])
xlabel('Time (s)')
ylabel('Capability Delivered')
title('Capability Delivered over Time')
legend('Capability Delivered at Target 1','Capability Delivered at Target 2', 'Capability
Desired')

�

AAPPENDIX D – CODE FOR SURFACE AND SUB-SURFACE HYBRID

CONTROL

%%%%% Input Variables

% Surface
cap desired [0.90;0.90];
xd [4000;4000];
yd [2000; 2000];

% Sub Surface
cap desired U [0.95; 0.95];
xd U [3800;3800];
yd U [2500; 2500];
zd U [800; 900];

% Global variables
res req 3; % Required pixels for detection of Small Boat via EO
height 4.5;
horizon (sqrt(17*height)+sqrt(17*height)) * 1000;

pfa 0.01; % Assuming Probablity of False Alarm as 0.01
sub 1 erfcinv(2*pfa);
f 150; % Frequency of Sonar
alpha (0.036*f^2)/(f^2 + 3600)+(3.2 * 10^ 7 * f^2);

% Obstacles

x1 obs 563.2095; % 100s for 1
y1 obs 223.6816;

x2 obs 3.2218e+03; % 400 for 2
y2 obs 165.5937;

x3 obs 2.7298e+03; % 300 for 3
y3 obs 131.4911;

obs mat [x1 obs;y1 obs;x2 obs;y2 obs;x3 obs;y3 obs]

x1 obs u 970.0342; % 45 for 1
y1 obs u 167.8621;
z1 obs u 231.2690;

x2 obs u 3.6648e+03; %200 for USV 3
y2 obs u 3.6648e+03;
z2 obs u 836.6365;

obs mat u [x1 obs u;y1 obs u;z1 obs u;x2 obs u;y2 obs u;z2 obs u;]
vobst u [0;0;0;0;0;0;0;0;0]
vunit u [0;0;0;0;0;0;0;0;0]

% Create USVs
x1 150.2;
y1 150.2;
x2 150.1;
y2 150.1;
x3 150;

��

y3 150;
x4 149.999;
y4 149.999;

swarmstate [x1;y1;x2;y2;x3;y3;x4;y4];
x1 plot(1) x1;
y1 plot(1) y1;
x2 plot(1) x2;
y2 plot(1) y2;
x3 plot(1) x3;
y3 plot(1) y3;
x4 plot(1) x4;
y4 plot(1) y4;
syms c symbol x1s y1s x2s y2s x3s y3s x4s y4s
ss [x1s;y1s;x2s;y2s;x3s;y3s;x4s;y4s];

x1 U 149;
y1 U 149;
z1 U 1;
x2 U 148.5;
y2 U 148.5;
z2 U 1.4;
x3 U 149.5;
y3 U 149.5;
z3 U 1.8;
swarmstate U [x1 U;y1 U;z1 U;x2 U;y2 U;z2 U; x3 U;y3 U;z3 U];
syms snr s magnitude s TL s x1u y1u z1u x2u y2u z2u x3u y3u z3u
ssu [x1u;y1u;z1u;x2u;y2u;z2u;x3u;y3u;z3u];
x1 plot u(1) x1 U;
y1 plot u(1) y1 U;
z1 plot u(1) z1 U;
x2 plot u(1) x2 U;
y2 plot u(1) y2 U;
z2 plot u(1) z2 U;
x3 plot u(1) x3 U;
y3 plot u(1) y3 U;
z3 plot u(1) z3 U;

vobst u zeros(size(ssu));
vunit u zeros(size(ssu));
vunit u xdomain zeros(size(ssu));
vobst zeros(size(ss));
vunit zeros(size(ss));

for t 1:1:900 % t time in seconds
 for i 1:1:length(cap desired U)
 for n 1:1:((length(swarmstate U))/3) % n vessel number
 R sqrt((xd U(i) (swarmstate U(n*3 2)))^2 + (yd U(i) swarmstate U(n*3 1))^2
+ (zd U(i) swarmstate U(n*3))^2);
 R s sqrt((xd U(i) (ssu(n*3 2)))^2 + (yd U(i) ssu(n*3 1))^2 + (zd U(i)
ssu(n*3))^2);
 if R > 501
 pd(n) 1/R;
 pd symbol(n) 1/R s;
 else

 TL 10*log(R) + 30 + alpha*R; % Transmission Loss based on Cylindrical
Spreading
 TS 10*log(0.25*10^2); % Target Strength based on large sphere w/
10m radius
 SL 180; % Assuming Sonar Source Level of 180db
 snr SL 2*TL + TS;
 magnitude 10^(snr/10);
 fhandle @(x) exp(x.^2);

���

 pd(n) 0.5 * (2/sqrt(pi))*integral(fhandle,sub 1 sqrt(magnitude),Inf);

 TL s 10*log(R s) + 30 + alpha*R s;
 snr s SL 2*TL s + TS;
 magnitude s 10^(snr s/10);
 pd symbol(n) 0.5 * (2/sqrt(pi))*int(fhandle,sub 1 sqrt(magnitude s),Inf);
 end

 end
 % calculate overall capability
 capability u(i) 0;
 cadd u 1;
 for o 1:1:((length(swarmstate U))/3)
 capability u(i) capability u(i) + pd(o)*cadd u;
 cadd u (1 capability u(i));
 end

 overall cap u 0;
 cadd 1;
 for o 1:1:((length(swarmstate U))/3)
 overall cap u overall cap u + pd symbol(o)*cadd;
 cadd (1 overall cap u);
 end

 jacobian s u jacobian(overall cap u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u]); %
calculate jacobian matrix based on partial derivative of position 0f (x1, y1)...
 jacobian subbed u
subs(jacobian s u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u],[swarmstate U(1),swarmstate U(2),swarmsta
te U(3),swarmstate U(4),swarmstate U(5),swarmstate U(6),swarmstate U(7),swarmstate U(8),swarmstat
e U(9)]);
 jaco mat u(i,:) (double(jacobian subbed u)); % final jacobian in numbers

 end

 % ADD IN OBSTACLE AVOIDANCE

 safezone u 100;

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 objrepx u 0;
 objrepy u 0;
 objrepz u 0;
 for u 1:1:((length(obs mat u)/3)) % obs number of obstructions
 dist u sqrt((swarmstate U(n*3 2) obs mat u(u*3 2))^2 + (swarmstate U(n*3 1)
obs mat u(u*3 1))^2 + (swarmstate U(n*3) obs mat u(u*3))^2);

 if dist u < safezone u
 angle u alpha atan2((swarmstate U((n*3 2)) obs mat u((u*3
2))),(swarmstate U((n*3) 1) obs mat u(u*3 1)));
 angle u beta atan2((swarmstate U((n*3))
obs mat u((u*3))),(swarmstate U((n*3) 1) obs mat u(u*3 1)));
 angle u charlie atan2((swarmstate U((n*3))
obs mat u((u*3))),(swarmstate U((n*3) 2) obs mat u(u*3 2)));

 objrepx u objrepx u + 300*((1/dist u) (1/safezone u))*cos(angle u alpha) +
300*((1/dist u) (1/safezone u))*cos(angle u charlie);
 objrepy u objrepy u + 300*((1/dist u) (1/safezone u))*sin(angle u alpha) +
300*((1/dist u) (1/safezone u))*cos(angle u beta);
 objrepz u objrepz u + 300*((1/dist u) (1/safezone u))*sin(angle u beta) +
300*((1/dist u) (1/safezone u))*sin(angle u charlie);
 end

 end
 vobst u((n*3) 2) objrepx u;
 vobst u(n*3 1) objrepy u;
 vobst u(n*3) objrepz u;

���

 end

 % ADD IN UNIT AVOIDANCE

 safezone unit u 100;

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 unitrepx u 0;
 unitrepy u 0;
 unitrepz u 0;
 for o 1:1:((length(swarmstate U))/3) % o number of vessels

 if n o
 vunit u((n*3) 2) 0;
 vunit u((n*3) 1) 0;
 vunit u(n*3) 0;
 else
 dist unit u sqrt((swarmstate U(n*3 2) swarmstate U(o*3 2))^2 +
(swarmstate U(n*3 1) swarmstate U(o*3 1))^2 + (swarmstate U(n*3) swarmstate U(o*3))^2);

 if dist unit u < safezone unit u

 angle unit u alpha atan2(((swarmstate U((n*3 2)) swarmstate U((o*3
2)))),((swarmstate U((n*3) 1) swarmstate U(o*3 1))));
 angle unit u beta atan2(((swarmstate U((n*3))
swarmstate U((o*3)))),((swarmstate U((n*3) 1) swarmstate U(o*3 1))));
 angle unit u charlie atan2(((swarmstate U((n*3))
swarmstate U((o*3)))),((swarmstate U((n*3) 2) swarmstate U(o*3 2))));

 unitrepx u unitrepx u + 1200*((1/dist unit u)
(1/safezone unit u))*cos(angle unit u alpha)+ 1200*((1/dist unit u)
(1/safezone unit u))*cos(angle unit u charlie);
 unitrepy u unitrepy u + 1200*((1/dist unit u)
(1/safezone unit u))*sin(angle unit u alpha)+ 1200*((1/dist unit u)
(1/safezone unit u))*cos(angle unit u beta);
 unitrepz u unitrepz u + 1200*((1/dist unit u)
(1/safezone unit u))*sin(angle unit u beta)+ 1200*((1/dist unit u)
(1/safezone unit u))*sin(angle unit u charlie);

 end

 end
 vunit u((n*3) 2) unitrepx u;
 vunit u((n*3) 1) unitrepy u;
 vunit u(n*3) unitrepz u;

 end
 end

 % ADD IN SURFACE / SUBSURFACEUNIT AVOIDANCE

 safezone xdomain unit u 100;

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 unitrepx xdomain u 0;
 unitrepy xdomain u 0;
 unitrepz xdomain u 0;
 for o 1:1:((length(swarmstate))/2) % o number of vessels
 dist unit xdomain u sqrt((swarmstate U(n*3 2) swarmstate(o*2 1))^2 +
(swarmstate U(n*3 1) swarmstate U(n*2))^2 + (swarmstate U(n*3) 0)^2);

 if dist unit xdomain u < safezone xdomain unit u

���

 angle unit u alpha xdomain atan2(((swarmstate U((n*3 2)) swarmstate U((o*2
1)))),((swarmstate U((n*3) 1) swarmstate U(o*2))));
 angle unit u beta xdomain atan2(((swarmstate U((n*3))
0)),((swarmstate U((n*3) 1) swarmstate U(o*2))));
 angle unit u charlie xdomain atan2(((swarmstate U((n*3))
0)),((swarmstate U((n*3) 2) swarmstate U(o*2 1))));

 unitrepx xdomain u unitrepx xdomain u + 1200*((1/dist unit xdomain u)
(1/safezone xdomain unit u))*cos(angle unit u alpha xdomain)+ 1200*((1/dist unit xdomain u)
(1/safezone xdomain unit u))*cos(angle unit u charlie xdomain);
 unitrepy xdomain u unitrepy xdomain u + 1200*((1/dist unit xdomain u)
(1/safezone xdomain unit u))*sin(angle unit u alpha xdomain)+ 1200*((1/dist unit xdomain u)
(1/safezone xdomain unit u))*cos(angle unit u beta xdomain);
 unitrepz xdomain u unitrepz xdomain u + 1200*((1/dist unit xdomain u)
(1/safezone xdomain unit u))*sin(angle unit u beta xdomain)+ 1200*((1/dist unit xdomain u)
(1/safezone xdomain unit u))*sin(angle unit u charlie xdomain);

 end

 end
 vunit u xdomain((n*3) 2) unitrepx xdomain u;
 vunit u xdomain((n*3) 1) unitrepy xdomain u;
 vunit u xdomain(n*3) unitrepz xdomain u;

 end

 % CONTROL LAW FOR UNDERWATER
 jacob pinv u pinv(jaco mat u);
 capability u t transpose(capability u);
 capability plot u(t,:) capability u;
 cdot u 0.09*(cap desired U capability u t);
 [sizex u, sizey u] size(jacob pinv u*jaco mat u);

 swarmstatedot u jacob pinv u * cdot u;
% + 45000*((eye(sizex u,sizey u) jacob pinv u*jaco mat u)*vobst u) +
45000*((eye(sizex u,sizey u) jacob pinv u*jaco mat u)*vunit u) + 45000*((eye(sizex u,sizey u)
jacob pinv u*jaco mat u)*vunit u xdomain);

 % Speed Limitations

 for n 1:1:((length(swarmstate U))/3)
 while abs(sqrt(((swarmstatedot u((n*3) 2))^2) + (swarmstatedot u((n*3) 1)^2) +
swarmstatedot u(n*3)^2)) > 30
 if swarmstatedot u((n*3) 2) > 0
 swarmstatedot u((n*3) 2) 0.5*swarmstatedot u((n*3) 2); else
 swarmstatedot u((n*3) 2) 0.5*swarmstatedot u((n*3) 2);
 end

 if swarmstatedot u((n*3) 1) > 0
 swarmstatedot u((n*3) 1) 0.5*swarmstatedot u((n*3) 1);
 else
 swarmstatedot u((n*3) 1) 0.5*swarmstatedot u((n*3) 1);
 end

 if swarmstatedot u(n*3) > 0
 swarmstatedot u(n*3) 0.5*swarmstatedot u(n*3);
 else
 swarmstatedot u(n*3) 0.5*swarmstatedot u(n*3);
 end
 end
 end

 swarmstate U swarmstate U + swarmstatedot u;
 for n 1:1:((length(swarmstate U))/3) % n vessel number
 if swarmstate U(n*3) > 0
 swarmstate U(n*3) 0;
 end
 end

���

 x1 plot u(t+1) swarmstate U(1);
 y1 plot u(t+1) swarmstate U(2);
 z1 plot u(t+1) swarmstate U(3);
 x2 plot u(t+1) swarmstate U(4);
 y2 plot u(t+1) swarmstate U(5);
 z2 plot u(t+1) swarmstate U(6);
 x3 plot u(t+1) swarmstate U(7);
 y3 plot u(t+1) swarmstate U(7);
 z3 plot u(t+1) swarmstate U(9);

 capability UNDERWATER(t) capability u(1);
 capability UNDERWATER 2(t) capability u(2);

 %%%%%%%%%%%% SURFACE VESSELS %%%%%%%%%%%%%%%%%%%%%%

 for i 1:1:length(cap desired) % i amount of capabilities desired

 % CALCULATE CAPABILITIES FOR EACH INDIVIDUAL VESSELS FOR SPECIFIC POINT
 for n 1:1:((length(swarmstate))/2) % n vessel number
 if sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2) 1)))^2) > 150000
 c(n) 1/(sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2) 1)))^2));
 c symbol(n) 1 /sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2) 1))^2));

 else
 if ((640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2)
1)))^2)*tand(24/2))) > 3)
 c(n) 1 0.00000001*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i)
swarmstate(((n*2) 1))^2));

 c symbol(n) 1 0.00000001*sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2)
1))^2));
 elseif sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2) 1)))^2))
> horizon
 c(n) 1/(sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2)
1)))^2)));

 c symbol(n) 1/(sqrt(((yd(i) ss(n*2))^2) + ((xd(i) ss(((n*2) 1)))^2)));
 else
 c(n) sin((pi/2)*(640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i)
swarmstate(((n*2) 1)))^2)*tand(24/2)))/(3));

 c symbol(n) sin((pi/2)*(640/(2*sqrt((yd(i) ss(n*2))^2 + (xd(i)
ss(((n*2) 1)))^2)*tand(24/2)))/(3));
 end
 end
 end

 % CALCULATE OVERALL CAPABILITY
 capability(i) 0 ;
 cadd 1;
 for o 1:1:((length(swarmstate))/2)
 capability(i) capability(i) + c(o)*cadd;
 cadd (1 capability(i));
 end

 overall cap 0 ;
 cadd 1;
 for o 1:1:((length(swarmstate))/2)
 overall cap overall cap + c symbol(o)*cadd;
 cadd (1 overall cap);
 end

 % SUB CAPABILITY(SYMBOLS) INTO JACOBIAN

���

 jacobian s jacobian(overall cap,[x1s,y1s,x2s,y2s,x3s,y3s,x4s,y4s]); % calculate
jacobian matrix based on partial derivative of position 0f (x1, y1)...
 jacobian subbed
subs(jacobian s,[x1s,y1s,x2s,y2s,x3s,y3s,x4s,y4s],[swarmstate(1),swarmstate(2),swarmstate(3),swar
mstate(4),swarmstate(5),swarmstate(6),swarmstate(7),swarmstate(8)]);
 jaco mat(i,:) (double(jacobian subbed)); % final jacobian in numbers

 end

 % ADD IN OBSTACLE AVOIDANCE

 safezone 100;

 for n 1:1:((length(swarmstate))/2) % n vessel number
 objrepx 0;
 objrepy 0;
 for obs 1:1:((length(obs mat)/2)) % obs number of obstructions
 dist sqrt((swarmstate((n*2) 1) obs mat((obs*2) 1))^2 + (swarmstate((n*2))
obs mat((obs*2)))^2);

 if dist < safezone
 angle atan2((swarmstate((n*2)) obs mat((obs*2))),(swarmstate((n*2) 1)
obs mat((obs*2) 1)));
 objrepx objrepx + 300*((1/dist) (1/safezone))*cos(angle);
 objrepy objrepy + 300*((1/dist) (1/safezone))*sin(angle);
 end
 vobst rec(:,t) vobst;

 end
 vobst((n*2) 1) objrepx;
 vobst(n*2) objrepy;

 end

 % ADD IN UNIT AVOIDANCE

 safezone unit 100;

 for n 1:1:((length(swarmstate))/2) % n vessel number
 unitrepx 0;
 unitrepy 0;
 for o 1:1:((length(swarmstate))/2) % o number of vessels

 if n o
 vunit((n*2) 1) 0;
 vunit(n*2) 0;
 else
 dist unit sqrt((swarmstate((n*2) 1) swarmstate((o*2) 1))^2 +
(swarmstate((n*2)) swarmstate((o*2)))^2);

 if dist unit < safezone unit
 angle unit atan2((swarmstate((n*2)) swarmstate(o*2)),(swarmstate((n*2) 1)
 swarmstate((o*2) 1)));

 unitrepx unitrepx + 800*((1/dist unit) (1/safezone unit))*cos(angle unit);
 unitrepy unitrepy + 800*((1/dist unit) (1/safezone unit))*sin(angle unit);
 end
 end
 vunit rec(:,t) vunit;

 end
 vunit((n*2) 1) unitrepx;
 vunit(n*2) unitrepy;

 end

 % CONTROL LAW
 jacob pinv pinv(jaco mat);

���

 capability t transpose(capability);
 capability plot(t,:) capability;
 cdot 0.009*(cap desired capability t);
 [sizex, sizey] size(jacob pinv*jaco mat);
 swarmstatedot jacob pinv*cdot;
% +150*((eye(sizex,sizey) jacob pinv*jaco mat)*vobst) + 150*((eye(sizex,sizey)
jacob pinv*jaco mat)*vunit); % vobst needs to be a 6 by 1 matrix

 % LIMITATIONS FOR SPEED
 for n 1:1:((length(swarmstate))/2)
 while abs(sqrt(((swarmstatedot((n*2) 1))^2) + (swarmstatedot(n*2)^2))) > 30
 if swarmstatedot((n*2) 1) > 0
 swarmstatedot((n*2) 1) 0.1*swarmstatedot((n*2) 1); % was previous
50 and 20
 else
 swarmstatedot((n*2) 1) 0.1*swarmstatedot((n*2) 1);
 end

 if swarmstatedot(n*2) > 0
 swarmstatedot(n*2) 0.1*swarmstatedot(n*2);
 else
 swarmstatedot(n*2) 0.1*swarmstatedot(n*2);
 end
 end
 end
 capability SURFACE(t) capability(1);
 capability SURFACE 2(t) capability(2);

 % CONTROL LAW (CONT'D)
 swarmstate swarmstate + swarmstatedot;

 x1 plot(t+1) swarmstate(1);
 y1 plot(t+1) swarmstate(2);
 x2 plot(t+1) swarmstate(3);
 y2 plot(t+1) swarmstate(4);
 x3 plot(t+1) swarmstate(5);
 y3 plot(t+1) swarmstate(6);
 x4 plot(t+1) swarmstate(7);
 y4 plot(t+1) swarmstate(8);

end

% PLOT
figure(1)
hold on
grid on

% Sub Surface
plot3(transpose(x1 plot u),transpose(y1 plot u),transpose(z1 plot u),'*','LineWidth',2.5,'Color',
[0 0.33 0])
plot3(transpose(x2 plot u),transpose(y2 plot u),transpose(z2 plot u),'*','LineWidth',2.5,'Color',
[0 0.66 0])
plot3(transpose(x3 plot u),transpose(y3 plot u),transpose(z3 plot u),'*','LineWidth',2.5,'Color',
[0 1.0 0])

plot3(xd U,yd U,zd U,'k^','LineWidth',2.0)
plot3(x1 obs u,y1 obs u,z1 obs u,'rd','LineWidth',6.0)
plot3(x2 obs u,y2 obs u,z2 obs u,'rd','LineWidth',6.0)

xlabel('X axis')
ylabel('Y axis')
zlabel('Z axis')

% Surface
plot(x1 plot,y1 plot,'o','Color',[0 0 0.5])
plot(x2 plot,y2 plot,'o','Color',[0 0 1.0])
plot(x3 plot,y3 plot,'o','Color',[0.5 0 0])

���

plot(x4 plot,y4 plot,'o','Color',[1.0 0 0])
plot(x1 obs,y1 obs,'rd','LineWidth',6.5)
plot(x2 obs,y2 obs,'rd','LineWidth',6.5)
plot(x3 obs,y3 obs,'rd','LineWidth',6.5)

plot(xd,yd,'^k')
xlabel('X Axis')
ylabel('Y Axis')

figure(2)
hold on
grid on
plot(1:length(capability UNDERWATER),capability UNDERWATER,'m .')
plot(1:length(capability UNDERWATER 2),capability UNDERWATER 2,'m .')
plot(1:length(capability SURFACE),capability SURFACE,'k .')
plot(1:length(capability SURFACE 2),capability SURFACE 2,'k .')
plot([1 length(capability)],[0.95 0.95],'m','LineWidth',3.0)
plot([1 length(capability)],[0.9 0.9],'k','LineWidth',3.0)
xlabel('Time (s)')
ylabel('Capability Delivered')
title('Capability Delivered over Time')
legend('Capability Delivered at Target 1','Capability Delivered at Target 2', 'Capability
Desired')

�	�

AAPPENDIX E – CODE FOR COOPERATIVE NAVIGATION

%%%% INPUT VARIABLES

% Defining All Symbols Used

syms x1s y1s c symbol snr s magnitude s TL s x1u y1u z1u x2u y2u z2u x3u y3u z3u x4u y4u z4u;

% Surface Capability Desired

cap desired = [0.95;];
xd = [1000;];
yd = [0;];

% Sub Surface Capability Desired

cap desired U = [0.95;0.95];
xd U = [2000;2000];
yd U = [200;1500];
zd U = [200; 180];

% Obstacles

x1 obs = 563.2095; % 100s for 1
y1 obs = 223.6816;

x2 obs = 600;
y2 obs = 500;

obs mat = [x1 obs;y1 obs;x2 obs;y2 obs;]

x1 obs u = 800.0342; % 45 for 1
y1 obs u = 100.8621;
z1 obs u = 231.2690;

obs mat u = [x1 obs u;y1 obs u;z1 obs u];

% Creating USVs

x1 = 150.1;
y1 = 150.1;

swarmstate = [x1;y1];

ss = [x1s;y1s];

x1 plot(1) = x1;
y1 plot(1) = y1;

% Creating UUVs

x1 U = 149;
y1 U = 149;
z1 U = 1;
x2 U = 145;
y2 U = 145;
z2 U = 1.4;
x3 U = 155;
y3 U = 155;
z3 U = 1.5;
x4 U = 160;
y4 U = 160;
z4 U = 1.2;

swarmstate U = [x1 U;y1 U;z1 U;x2 U;y2 U;z2 U; x3 U; y3 U; z3 U; x4 U; y4 U; z4 U];
ssu = [x1u;y1u;z1u;x2u;y2u;z2u;x3u;y3u;z3u;x4u;y4u;z4u];
x1 plot u(1) = x1 U;

�
�

y1 plot u(1) = y1 U;
z1 plot u(1) = z1 U;
x2 plot u(1) = x2 U;
y2 plot u(1) = y2 U;
z2 plot u(1) = z2 U;
x3 plot u(1) = x3 U;
y3 plot u(1) = y3 U;
z3 plot u(1) = z3 U;
x4 plot u(1) = x4 U;
y4 plot u(1) = y4 U;
z4 plot u(1) = z4 U;

% Etc.

res req = 3; % Required pixels for detection of Small Boat via EO
height = 4.5;
horizon = (sqrt(17*height)+sqrt(17*height)) * 1000;

pfa = 0.01; % Assuming Probablity of False Alarm as 0.01
sub 1 = erfcinv(2*pfa);
f = 150; % Frequency of Sonar
alpha = (0.036*f^2)/(f^2 + 3600)+(3.2 * 10^ 7 * f^2);

detect = 0;
x target = 3100;
y target = 1500;

vunit u attloc = zeros(size(ssu));
vunit u attloc surf = zeros(size(ss));
vobst u = zeros(size(ssu));
vunit u = zeros(size(ssu));
vunit u xdomain = zeros(size(ssu));
vobst = zeros(size(ss));
vunit = zeros(size(ss));
time = [0, 0, 0, 0];
capability worstcase = 0;

h =
plot3(transpose(x1 plot u(1)),transpose(y1 plot u(1)),transpose(z1 plot u(1)),'*','LineWidth',2.5,'Color',[0
0.33 0]);
h1 =
plot3(transpose(x2 plot u(1)),transpose(y2 plot u(1)),transpose(z2 plot u(1)),'*','LineWidth',2.5,'Color',[0
0.66 0]);
h2 = plot(x1 plot(1),y1 plot(1),'o','Color',[0 0 0.5]);
h3 =
plot3(transpose(x3 plot u(1)),transpose(y3 plot u(1)),transpose(z3 plot u(1)),'*','LineWidth',2.5,'Color',[0
0.99 0]);
h4 =
plot3(transpose(x4 plot u(1)),transpose(y4 plot u(1)),transpose(z4 plot u(1)),'*','LineWidth',2.5,'Color',[0
0.25 0.25]);
h5 = plot(x1 plot u(1),y1 plot u(1));
h6 = plot(x1 plot u(1),y1 plot u(1));
h7 = plot(x1 plot u(1),y1 plot u(1));
h8 = plot(x1 plot u(1),y1 plot u(1));
text1 = text(xd U(1),yd U(1),zd U(1),' ');
text2 = text(xd U(1),yd U(1),zd U(1),' ');
text3 = text(xd U(1),yd U(1),zd U(1),' ');
text4 = text(xd U(1),yd U(1),zd U(1),' ');
text5 = text(xd U(1),yd U(1),zd U(1),' ');
text6 = text(xd U(1),yd U(1),zd U(1),' ');
text7 = text(xd U(1),yd U(1),zd U(1),' ');
text8 = text(xd U(1),yd U(1),zd U(1),' ');
text9 = text(xd U(1),yd U(1),zd U(1),' ');
text10 = text(xd U(1),yd U(1),zd U(1),' ');

%%%%%%%% START TIME AND CONTROL LOOP %%%%%%%%%%

for t = 1:1:10000

 %%%%% SURFACE VESSELS CONTROL LOOP %%%%%%%

 for i = 1:1:length(cap desired)
 % CALCULATE CAPABILITIES FOR EACH INDIVIDUAL VESSELS FOR SPECIFIC POINT
 for n = 1:1:((length(swarmstate))/2)
 if sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2) 1)))^2) > 150000
 c(n) = 1/(sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2) 1)))^2));
 c symbol(n) = 1 /sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2) 1))^2));

���

 else
 if ((640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2) 1)))^2)*tand(24/2)))
> 3)
 c(n) = 1 0.00000001*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2)
1))^2));

 c symbol(n) = 1 0.00000001*sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2) 1))^2));
 elseif sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2) 1)))^2)) > horizon
 c(n) = 1/(sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2) 1)))^2)));

 c symbol(n) = 1/(sqrt(((yd(i) ss(n*2))^2) + ((xd(i) ss(((n*2) 1)))^2)));
 else
 c(n) = sin((pi/2)*(640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2)
1)))^2)*tand(24/2)))/(3));

 c symbol(n) = sin((pi/2)*(640/(2*sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2)
1)))^2)*tand(24/2)))/(3));
 end
 end
 end

 % CALCULATE OVERALL CAPABILITY
 capability(i) = 0 ;
 cadd = 1;
 for o = 1:1:((length(swarmstate))/2)
 capability(i) = capability(i) + c(o)*cadd;
 cadd = (1 capability(i));
 end

 overall cap = 0 ;
 cadd = 1;
 for o = 1:1:((length(swarmstate))/2)
 overall cap = overall cap + c symbol(o)*cadd;
 cadd = (1 overall cap);
 end

 % SUB CAPABILITY(SYMBOLS) INTO JACOBIAN
 jacobian s = jacobian(overall cap,[x1s,y1s]); % calculate jacobian matrix based on partial
derivative of position 0f (x1, y1)...
 jacobian subbed = subs(jacobian s,[x1s,y1s],[swarmstate(1),swarmstate(2)]);
 jaco mat(i,:) = (double(jacobian subbed)); % final jacobian in numbers

 end

 % ALL SECONDARY CONTROL VARAIBLES DEFINED

 safezone = 100;
 safezone unit = 20;

 % SECONDARY CONTROL CODE

 for n = 1:1:((length(swarmstate))/2)

 % ASSISTING LOCALIZATION
 unitattx surf = 0;
 unitatty surf = 0;
 for nol = 1:1:((length(swarmstate U))/3)

 if time(nol) > 300

 angle unit u alpha att = atan2(((swarmstate U((nol*3 2)) swarmstate((n*2
1)))),((swarmstate U((nol*3) 1) swarmstate(n*2))));

 unitattx surf = unitattx surf + 500*((500/10))*sin(angle unit u alpha att);
 unitatty surf = unitatty surf + 500*((500/10))*cos(angle unit u alpha att);
 else
 unitattx surf = 0;
 unitatty surf = 0;
 end
 end

 vunit u attloc surf((n*2) 1) = unitattx surf;
 vunit u attloc surf((n*2)) = unitatty surf;

����

 end

 % CONTROL LAW FOR SURFACE
 jacob pinv = pinv(jaco mat);
 capability t = transpose(capability);
 capability plot(t,:) = capability;
 cdot = 9*(cap desired capability t);
 [sizex, sizey] = size(jacob pinv*jaco mat);
 swarmstatedot = 10*jacob pinv*cdot +150*((eye(sizex,sizey) jacob pinv*jaco mat)*vobst) +
150*((eye(sizex,sizey) jacob pinv*jaco mat)*vunit) + 0.001*((eye(sizex,sizey)
jacob pinv*jaco mat)*vunit u attloc surf); % vobst needs to be a 6 by 1 matrix
 hi = 150*((eye(sizex,sizey) jacob pinv*jaco mat)*vobst);

 % LIMITATIONS FOR SPEED
 for n = 1:1:((length(swarmstate))/2)
 while abs(sqrt(((swarmstatedot((n*2) 1))^2) + (swarmstatedot(n*2)^2))) > 10.5
 if swarmstatedot((n*2) 1) >= 0
 swarmstatedot((n*2) 1) = 0.1*swarmstatedot((n*2) 1);
 else
 swarmstatedot((n*2) 1) = 0.1*swarmstatedot((n*2) 1);
 end

 if swarmstatedot(n*2) >= 0
 swarmstatedot(n*2) = 0.1*swarmstatedot(n*2);
 else
 swarmstatedot(n*2) = 0.1*swarmstatedot(n*2);
 end
 end
 end
 capability SURFACE(t) = capability(1);

 % CONTROL LAW (CONT'D)
 swarmstate = swarmstate + swarmstatedot;

 x1 plot(t+1) = swarmstate(1);
 y1 plot(t+1) = swarmstate(2);

 %%%%%%%%%%%%% CONTROL LOOP FOR UNDERWATER VEHICLES %%%%%%%%%%%%%%
 for i = 1:1:length(cap desired U)
 for n = 1:1:((length(swarmstate U))/3) % n = vessel number
 R = sqrt((xd U(i) (swarmstate U(n*3 2)))^2 + (yd U(i) swarmstate U(n*3 1))^2 + (zd U(i)
swarmstate U(n*3))^2);
 R s = sqrt((xd U(i) (ssu(n*3 2)))^2 + (yd U(i) ssu(n*3 1))^2 + (zd U(i) ssu(n*3))^2);
 if R > 501
 pd(n) = 1/R;
 pd symbol(n) = 1/R s;
 else

 TL = 10*log(R) + 30 + alpha*R; % Transmission Loss based on Cylindrical Spreading
 TS = 10*log(0.25*10^2); % Target Strength based on large sphere w/ 10m radius
 SL = 180; % Assuming Sonar Source Level of 180db
 snr = SL 2*TL + TS;
 magnitude = 10^(snr/10);
 fhandle = @(x) exp(x.^2);
 pd(n) = 0.5 * (2/sqrt(pi))*integral(fhandle,sub 1 sqrt(magnitude),Inf);

 TL s = 10*log(R s) + 30 + alpha*R s;
 snr s = SL 2*TL s + TS;
 magnitude s = 10^(snr s/10);
 pd symbol(n) = 0.5 * (2/sqrt(pi))*int(fhandle,sub 1 sqrt(magnitude s),Inf);
 end

 end
 % calculate overall capability
 capability u(i) = 0;
 cadd u = 1;
 for o = 1:1:((length(swarmstate U))/3)
 capability u(i) = capability u(i) + pd(o)*cadd u;
 cadd u = (1 capability u(i));
 end

 overall cap u=0;
 cadd = 1;
 for o = 1:1:((length(swarmstate U))/3)
 overall cap u = overall cap u + pd symbol(o)*cadd;
 cadd = (1 overall cap u);
 end

����

 jacobian s u = jacobian(overall cap u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u,x4u,y4u,z4u]); %
calculate jacobian matrix based on partial derivative of position 0f (x1, y1)...
 jacobian subbed u =
subs(jacobian s u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u,x4u,y4u,z4u],[x1 plot u(t),y1 plot u(t),z1 plot u(t),x2
plot u(t),y2 plot u(t),z2 plot u(t),x3 plot u(t),y3 plot u(t),z3 plot u(t),x4 plot u(t),y4 plot u(t),z4 plot u(
t)]);
 jaco mat u(i,:) = (double(jacobian subbed u)); % final jacobian in numbers
 end

 % ADD IN SECONDARY CONTROLS FOR UNDERWATER VESSELS

 % Defining Variables

 safezone u = 100;
 safezone unit u = 20;
 safezone xdomain unit u = 20;
 unitrepx xdomain u = 0;
 unitrepy xdomain u = 0;
 unitrepz xdomain u = 0;
 objrepx u = 0;
 objrepy u = 0;
 objrepz u = 0;
 unitattx = 0;
 unitatty = 0;
 unitattz = 0;
 unitrepx u = 0;
 unitrepy u = 0;
 unitrepz u = 0;

 for no sub = 1:1:length(swarmstate U)/3

 for no surface = 1:1:length(swarmstate)/2

 distance for localization(no sub) = sqrt((swarmstate U(no sub*3 2) (swarmstate((no surface*2)
1)))^2 + (swarmstate U((no sub*3) 1) swarmstate(no surface*2))^2 + (swarmstate U(no sub*3))^2);
 if distance for localization(no sub) < 500
 swarmstate U(no sub*3 2) = swarmstate U(no sub*3 2);
 swarmstate U(no sub*3 1) = swarmstate U(no sub*3 1);
 swarmstate U(no sub*3) = swarmstate U(no sub*3);
 time(no sub) = 0;
 else
 swarmstate U(no sub*3 2) = swarmstate U(no sub*3 2);
 swarmstate U(no sub*3 1) = swarmstate U(no sub*3 1);
 swarmstate U(no sub*3) = swarmstate U(no sub*3);
 time(no sub) = time(no sub) + 1;
 end
 end
 end

 % ASSIT IN LOCALIZATION
 for uol = 1:1:((length(swarmstate))/2)

 [val idx] = max(time);
 if val > 300

 angle unit u alpha att = atan2(((swarmstate U((idx*3 2)) swarmstate((uol*2
1)))),((swarmstate U(idx*3) 1) swarmstate(uol*2)));
 angle unit u beta att = atan2(((swarmstate U((idx*3)) 0)),((swarmstate U((idx*3) 1)
swarmstate(uol*2))));
 angle unit u charlie att = atan2(((swarmstate U((idx*3)) 0)),((swarmstate U((idx*3) 2)
swarmstate(uol*2 1))));

 magnitude alpha = norm(swarmstate U((idx*3 2):(idx*3 1)) swarmstate);
 magnitude beta = norm(swarmstate U((idx*3 1):(idx*3)) [swarmstate(2);0]);
 magnitude charlie = norm([swarmstate U(idx*3 2);swarmstate U(idx*3)] [swarmstate(1);0]);

 unitattx = unitattx magnitude alpha*sin(angle unit u alpha att)
magnitude charlie*cos(angle unit u charlie att);
 unitatty = unitatty + magnitude alpha*cos(angle unit u alpha att)
magnitude beta*cos(angle unit u beta att);
 unitattz = unitattz magnitude beta*sin(angle unit u beta att)
magnitude charlie*sin(angle unit u charlie att);

 vunit u attloc = [0;0;0;0;0;0;0;0;0;0;0;0];
 vunit u attloc((idx*3) 2) = unitattx;
 vunit u attloc((idx*3) 1) = unitatty;
 vunit u attloc(idx*3) = unitattz;

����

 else
 vunit u attloc = [0;0;0;0;0;0;0;0;0;0;0;0];
 end
 end

 % CONTROL LAW FOR UNDERWATER
 jacob pinv u = pinv(jaco mat u);
 capability u t =transpose(capability worstcase);
 capability plot u(t,:) = capability u;
 cdot u = 1000*(cap desired U capability u t);
 [sizex u, sizey u] = size(jacob pinv u*jaco mat u);

 swarmstatedot u = 100*jacob pinv u * cdot u + 45000*((eye(sizex u,sizey u)
jacob pinv u*jaco mat u)*vunit u attloc) + 45*((eye(sizex u,sizey u) jacob pinv u*jaco mat u)*vobst u) +
45*((eye(sizex u,sizey u) jacob pinv u*jaco mat u)*vunit u) + 45*((eye(sizex u,sizey u)
jacob pinv u*jaco mat u)*vunit u xdomain);

 % Speed Limitations

 for n = 1:1:((length(swarmstate U))/3)
 while abs(sqrt(((swarmstatedot u((n*3) 2))^2) + (swarmstatedot u((n*3) 1)^2) + swarmstatedot u(n*3)^2))
> 8
 if swarmstatedot u((n*3) 2) >= 0
 swarmstatedot u((n*3) 2) = 0.5*swarmstatedot u((n*3) 2); else
 swarmstatedot u((n*3) 2) = 0.5*swarmstatedot u((n*3) 2);
 end

 if swarmstatedot u((n*3) 1) >= 0
 swarmstatedot u((n*3) 1) = 0.5*swarmstatedot u((n*3) 1);
 else
 swarmstatedot u((n*3) 1) = 0.5*swarmstatedot u((n*3) 1);
 end

 if swarmstatedot u(n*3) >= 0
 swarmstatedot u(n*3) = 0.5*swarmstatedot u(n*3);
 else
 swarmstatedot u(n*3) = 0.5*swarmstatedot u(n*3);
 end
 end
 end

 % FINAL SWARMSTATE FOR UNDERWATER
 swarmstate U = swarmstate U + swarmstatedot u;
 for n = 1:1:((length(swarmstate U))/3) % n = vessel number
 if swarmstate U(n*3) > 0
 swarmstate U(n*3) = 0;
 end
 end

 % CALCULATING WORST CASE CAPABILITY

 for n = 1:1:length(swarmstate U)/3
 unc(n) = time(n)*0.160376;
 end

 for n = 1:1:length(xd U)
 if (xd U(n) swarmstate U(1)) > 0
 x1 plot u(t+1) = swarmstate U(1) unc(1);
 else
 x1 plot u(t+1) = swarmstate U(1) + unc(1);
 end

 if (yd U(n) swarmstate U(2)) > 0
 y1 plot u(t+1) = swarmstate U(2) unc(1);
 else
 y1 plot u(t+1) = swarmstate U(2) + unc(1);
 end

 if (zd U(n) swarmstate U(3)) > 0
 z1 plot u(t+1) = swarmstate U(3) unc(1);
 else
 z1 plot u(t+1) = swarmstate U(3) + unc(1);
 if z1 plot u(t+1) > 0
 z1 plot u(t+1) = 0;

����

 end
 end

 if (xd U(n) swarmstate U(4)) > 0
 x2 plot u(t+1) = swarmstate U(4) unc(2);
 else
 x2 plot u(t+1) = swarmstate U(4) + unc(2);
 end

 if (yd U(n) swarmstate U(5)) > 0
 y2 plot u(t+1) = swarmstate U(5) unc(2);
 else
 y2 plot u(t+1) = swarmstate U(5) + unc(2);
 end

 if (zd U(n) swarmstate U(6)) > 0
 z2 plot u(t+1) = swarmstate U(6) unc(2);
 else
 z2 plot u(t+1) = swarmstate U(6) + unc(2);
 if z2 plot u(t+1) > 0
 z2 plot u(t+1) = 0;
 end
 end

 if (xd U(n) swarmstate U(7)) > 0
 x3 plot u(t+1) = swarmstate U(7) unc(3);
 else
 x3 plot u(t+1) = swarmstate U(7) + unc(3);
 end

 if (yd U(n) swarmstate U(8)) > 0
 y3 plot u(t+1) = swarmstate U(8) unc(3);
 else
 y3 plot u(t+1) = swarmstate U(8) + unc(3);
 end

 if (zd U(n) swarmstate U(9)) > 0
 z3 plot u(t+1) = swarmstate U(9) unc(3);
 else
 z3 plot u(t+1) = swarmstate U(9) + unc(3);
 if z3 plot u(t+1) > 0
 z3 plot u(t+1) = 0;
 end
 end

 if (xd U(n) swarmstate U(10)) > 0
 x4 plot u(t+1) = swarmstate U(10) unc(4);
 else
 x4 plot u(t+1) = swarmstate U(10) + unc(4);
 end

 if (yd U(n) swarmstate U(11)) > 0
 y4 plot u(t+1) = swarmstate U(11) unc(4);
 else
 y4 plot u(t+1) = swarmstate U(11) + unc(4);
 end

 if (zd U(n) swarmstate U(12)) > 0
 z4 plot u(t+1) = swarmstate U(12) unc(4);
 else
 z4 plot u(t+1) = swarmstate U(12) + unc(4);
 if z4 plot u(t+1) > 0
 z4 plot u(t+1) = 0;
 end
 end

 end

 swarmstate worstcase = [x1 plot u(t+1), y1 plot u(t+1), z1 plot u(t+1), x2 plot u(t+1), y2 plot u(t+1),
z2 plot u(t+1),x3 plot u(t+1),y3 plot u(t+1),z3 plot u(t+1),x4 plot u(t+1),y4 plot u(t+1),z4 plot u(t+1)];

 for n = 1:1:((length(swarmstate U))/3) % n = vessel number
 if swarmstate worstcase(n*3) > 0
 swarmstate worstcase(n*3) = 0;

����

 end
 end

 % USE ABOVE PLOTS TO CALCULATE WORST CASE CAPABILITY DELIVERED

 for i = 1:1:length(cap desired U)

 for n = 1:1:((length(swarmstate U))/3) % n = vessel number
 R = sqrt((xd U(i) (swarmstate worstcase(n*3 2)))^2 + (yd U(i) swarmstate worstcase(n*3
1))^2 + (zd U(i) swarmstate worstcase(n*3))^2);
 if R > 501
 pd(n) = 1/R;
 else

 TL = 10*log(R) + 30 + alpha*R; % Transmission Loss based on Cylindrical Spreading
 TS = 10*log(0.25*10^2); % Target Strength based on large sphere w/ 10m radius
 SL = 180; % Assuming Sonar Source Level of 180db
 snr = SL 2*TL + TS;
 magnitude = 10^(snr/10);
 fhandle = @(x) exp(x.^2);
 pd(n) = 0.5 * (2/sqrt(pi))*integral(fhandle,sub 1 sqrt(magnitude),Inf); %
 end

 end
 % calculate overall capability
 capability worstcase(i) = 0;
 cadd u = 1;
 for o = 1:1:((length(swarmstate U))/3)
 capability worstcase(i) = capability worstcase(i) + pd(o)*cadd u;
 cadd u = (1 capability worstcase(i));
 end
 end

 %%%%%%%%%%% PLOTS

 delete(h)
 delete(h1)
 delete(h2)
 delete(h3)
 delete(h4)
 delete(h5)
 delete(h6)
 delete(h7)
 delete(h8)

 delete(text2)
 delete(text4)
 delete(text6)
 delete(text7)
 delete(text8)
 delete(text9)
 delete(text10)

 figure(1)
 axis([0 2500 0 2000 300 0])
 hold on
 grid on
 plot3(xd U,yd U,zd U,'k^','LineWidth',2.0)

 plot(xd,yd,'^k')

 xlabel('X axis')
 ylabel('Y axis')
 zlabel('Z axis')

 h = plot3(swarmstate U(1),swarmstate U(2),swarmstate U(3),'*','LineWidth',2.5,'Color',[0 0.33 0]);
 h1 = plot3(swarmstate U(4),swarmstate U(5),swarmstate U(6),'*','LineWidth',2.5,'Color',[0 0.66 0]);
 h2 = plot(x1 plot(t+1),y1 plot(t+1),'*','Color',[0 0 0.5]);
 h3 = plot3(swarmstate U(7),swarmstate U(8),swarmstate U(9),'*','LineWidth',2.5,'Color',[0 0.99 0]);
 h4 = plot3(swarmstate U(10),swarmstate U(11),swarmstate U(12),'*','LineWidth',2.5,'Color',[0 0.25 0.25]);

 h5 = plot3([x1 plot u(t+1) x1 plot u(t+1)],[y1 plot u(t+1) y1 plot u(t+1)],[z1 plot u(t+1) 300],'
','Color',[0.5 0.5 0.5]);
 h6 = plot3([x2 plot u(t+1) x2 plot u(t+1)],[y2 plot u(t+1) y2 plot u(t+1)],[z2 plot u(t+1) 300],'
','Color',[0.5 0.5 0.5]);

����

 h7 = plot3([x3 plot u(t+1) x3 plot u(t+1)],[y3 plot u(t+1) y3 plot u(t+1)],[z3 plot u(t+1) 300],'
','Color',[0.5 0.5 0.5]);
 h8 = plot3([x4 plot u(t+1) x4 plot u(t+1)],[y4 plot u(t+1) y4 plot u(t+1)],[z4 plot u(t+1) 300],'
','Color',[0.5 0.5 0.5]);

 text1 = text(xd, yd, ['Desired Capability:',' ',num2str(cap desired)]);
 text2 = text(xd, yd 50, ['Current Capability:',' ',num2str(capability)]);

 text3 = text(xd U(1), yd U(1), zd U(1), ['Desired Capability:',' ',num2str(cap desired U(1))]);
 text4 = text(xd U(1), yd U(1) 50, zd U(1), ['Current Capability:',' ',num2str(capability worstcase(1))]);

 text5 = text(xd U(2), yd U(2) 100, zd U(2), ['Desired Capability:',' ',num2str(cap desired U(2))]);
 text6 = text(xd U(2), yd U(2) 150, zd U(2), ['Current Capability:','
',num2str(capability worstcase(2))]);

 text7 = text(swarmstate U(1),swarmstate U(2),swarmstate U(3),['TimeLL1:', ' ',num2str(time(1))]);
 text8 = text(swarmstate U(4),swarmstate U(5),swarmstate U(6),['TimeLL2:', ' ',num2str(time(2))]);
 text9 = text(swarmstate U(7),swarmstate U(8),swarmstate U(9),['TimeLL3:', ' ',num2str(time(3))]);
 text10 = text(swarmstate U(10),swarmstate U(11),swarmstate U(12),['TimeLL4:', ' ',num2str(time(4))]);
 title(sprintf('Time: %d s', t));

 drawnow
end% END TIME LOOP

����

AAPPENDIX F – CODE FOR COOPERATIVE NAVIGATION AND

INTERDICTION

%%%% INPUT VARIABLES

% Defining All Symbols Used

syms x1s y1s c symbol snr s magnitude s TL s x1u y1u z1u x2u y2u z2u x3u y3u z3u x4u y4u z4u;

% Surface Capability Desired

cap desired [0.95;];
xd [1000;];
yd [0;];

% Sub Surface Capability Desired

cap desired U [0.95;0.95];
xd U [2000;2000];
yd U [200;1500];
zd U [200; 180];

% Obstacles

x1 obs 563.2095; % 100s for 1
y1 obs 223.6816;

x2 obs 600;
y2 obs 500;

obs mat [x1 obs;y1 obs;x2 obs;y2 obs;]

x1 obs u 800.0342; % 45 for 1
y1 obs u 100.8621;
z1 obs u 231.2690;

obs mat u [x1 obs u;y1 obs u;z1 obs u];

% Creating USVs

x1 150.1;
y1 150.1;

swarmstate [x1;y1];

ss [x1s;y1s];

x1 plot(1) x1;
y1 plot(1) y1;

% Creating UUVs

x1 U 149;
y1 U 149;
z1 U 1;
x2 U 145;
y2 U 145;
z2 U 1.4;

��	�

x3 U 155;
y3 U 155;
z3 U 1.5;
x4 U 160;
y4 U 160;
z4 U 1.2;

swarmstate U [x1 U;y1 U;z1 U;x2 U;y2 U;z2 U; x3 U; y3 U; z3 U; x4 U; y4 U; z4 U];
ssu [x1u;y1u;z1u;x2u;y2u;z2u;x3u;y3u;z3u;x4u;y4u;z4u];
x1 plot u(1) x1 U;
y1 plot u(1) y1 U;
z1 plot u(1) z1 U;
x2 plot u(1) x2 U;
y2 plot u(1) y2 U;
z2 plot u(1) z2 U;
x3 plot u(1) x3 U;
y3 plot u(1) y3 U;
z3 plot u(1) z3 U;
x4 plot u(1) x4 U;
y4 plot u(1) y4 U;
z4 plot u(1) z4 U;

% Etc.

res req 3; % Required pixels for detection of Small Boat via EO
height 4.5;
horizon (sqrt(17*height)+sqrt(17*height)) * 1000;

pfa 0.01; % Assuming Probablity of False Alarm as 0.01
sub 1 erfcinv(2*pfa);
f 150; % Frequency of Sonar
alpha (0.036*f^2)/(f^2 + 3600)+(3.2 * 10^ 7 * f^2);

detect 0;
x target 3100;
y target 1500;

vunit u attloc zeros(size(ssu));
vunit u attloc surf zeros(size(ss));
vobst u zeros(size(ssu));
vunit u zeros(size(ssu));
vunit u xdomain zeros(size(ssu));
vobst zeros(size(ss));
vunit zeros(size(ss));
time [0, 0, 0, 0];
capability worstcase 0;

h
plot3(transpose(x1 plot u(1)),transpose(y1 plot u(1)),transpose(z1 plot u(1)),'*','LineWidth',2.5
,'Color',[0 0.33 0]);
h1
plot3(transpose(x2 plot u(1)),transpose(y2 plot u(1)),transpose(z2 plot u(1)),'*','LineWidth',2.5
,'Color',[0 0.66 0]);
h2 plot(x1 plot(1),y1 plot(1),'o','Color',[0 0 0.5]);
h3
plot3(transpose(x3 plot u(1)),transpose(y3 plot u(1)),transpose(z3 plot u(1)),'*','LineWidth',2.5
,'Color',[0 0.99 0]);
h4
plot3(transpose(x4 plot u(1)),transpose(y4 plot u(1)),transpose(z4 plot u(1)),'*','LineWidth',2.5
,'Color',[0 0.25 0.25]);
h5 plot(x1 plot u(1),y1 plot u(1));
h6 plot(x1 plot u(1),y1 plot u(1));
h7 plot(x1 plot u(1),y1 plot u(1));
h8 plot(x1 plot u(1),y1 plot u(1));
text1 text(xd U(1),yd U(1),zd U(1),' ');
text2 text(xd U(1),yd U(1),zd U(1),' ');
text3 text(xd U(1),yd U(1),zd U(1),' ');
text4 text(xd U(1),yd U(1),zd U(1),' ');

��
�

text5 text(xd U(1),yd U(1),zd U(1),' ');
text6 text(xd U(1),yd U(1),zd U(1),' ');
text7 text(xd U(1),yd U(1),zd U(1),' ');
text8 text(xd U(1),yd U(1),zd U(1),' ');
text9 text(xd U(1),yd U(1),zd U(1),' ');
text10 text(xd U(1),yd U(1),zd U(1),' ');

%%%%%%%% START TIME AND CONTROL LOOP %%%%%%%%%%

for t 1:1:10000

 %%%%% SURFACE VESSELS CONTROL LOOP %%%%%%%

 for i 1:1:length(cap desired)
 % CALCULATE CAPABILITIES FOR EACH INDIVIDUAL VESSELS FOR SPECIFIC POINT
 for n 1:1:((length(swarmstate))/2)
 if sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2) 1)))^2) > 150000
 c(n) 1/(sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2) 1)))^2));
 c symbol(n) 1 /sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2) 1))^2));

 else
 if ((640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i) swarmstate(((n*2)
1)))^2)*tand(24/2))) > 3)
 c(n) 1 0.00000001*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i)
swarmstate(((n*2) 1))^2));

 c symbol(n) 1 0.00000001*sqrt((yd(i) ss(n*2))^2 + (xd(i) ss(((n*2)
1))^2));
 elseif sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2) 1)))^2))
> horizon
 c(n) 1/(sqrt(((yd(i) swarmstate(n*2))^2) + ((xd(i) swarmstate(((n*2)
1)))^2)));

 c symbol(n) 1/(sqrt(((yd(i) ss(n*2))^2) + ((xd(i) ss(((n*2) 1)))^2)));
 else
 c(n) sin((pi/2)*(640/(2*sqrt((yd(i) swarmstate(n*2))^2 + (xd(i)
swarmstate(((n*2) 1)))^2)*tand(24/2)))/(3));

 c symbol(n) sin((pi/2)*(640/(2*sqrt((yd(i) ss(n*2))^2 + (xd(i)
ss(((n*2) 1)))^2)*tand(24/2)))/(3));
 end
 end
 end

 % CALCULATE OVERALL CAPABILITY
 capability(i) 0 ;
 cadd 1;
 for o 1:1:((length(swarmstate))/2)
 capability(i) capability(i) + c(o)*cadd;
 cadd (1 capability(i));
 end

 overall cap 0 ;
 cadd 1;
 for o 1:1:((length(swarmstate))/2)
 overall cap overall cap + c symbol(o)*cadd;
 cadd (1 overall cap);
 end

 % SUB CAPABILITY(SYMBOLS) INTO JACOBIAN
 jacobian s jacobian(overall cap,[x1s,y1s]); % calculate jacobian matrix based on
partial derivative of position 0f (x1, y1)...
 jacobian subbed subs(jacobian s,[x1s,y1s],[swarmstate(1),swarmstate(2)]);
 jaco mat(i,:) (double(jacobian subbed)); % final jacobian in numbers

 end

����

 % ALL SECONDARY CONTROL VARAIBLES DEFINED

 safezone 100;
 safezone unit 20;

 % SECONDARY CONTROL CODE

 for n 1:1:((length(swarmstate))/2)
 % ASSISTING LOCALIZATION
 unitattx surf 0;
 unitatty surf 0;
 for nol 1:1:((length(swarmstate U))/3)

 if time(nol) > 300

 angle unit u alpha att atan2(((swarmstate U((nol*3 2)) swarmstate((n*2
1)))),((swarmstate U((nol*3) 1) swarmstate(n*2))));

 unitattx surf unitattx surf + 500*((500/10))*sin(angle unit u alpha att);
 unitatty surf unitatty surf + 500*((500/10))*cos(angle unit u alpha att);
 else
 unitattx surf 0;
 unitatty surf 0;
 end
 end

 vunit u attloc surf((n*2) 1) unitattx surf;
 vunit u attloc surf((n*2)) unitatty surf;
 end

 % CONTROL LAW FOR SURFACE
 jacob pinv pinv(jaco mat);
 capability t transpose(capability);
 capability plot(t,:) capability;
 cdot 9*(cap desired capability t);
 [sizex, sizey] size(jacob pinv*jaco mat);
 swarmstatedot 10*jacob pinv*cdot +150*((eye(sizex,sizey) jacob pinv*jaco mat)*vobst) +
150*((eye(sizex,sizey) jacob pinv*jaco mat)*vunit) + 0.001*((eye(sizex,sizey)
jacob pinv*jaco mat)*vunit u attloc surf); % vobst needs to be a 6 by 1 matrix
 hi 150*((eye(sizex,sizey) jacob pinv*jaco mat)*vobst);

 % LIMITATIONS FOR SPEED
 for n 1:1:((length(swarmstate))/2)
 while abs(sqrt(((swarmstatedot((n*2) 1))^2) + (swarmstatedot(n*2)^2))) > 10.5
 if swarmstatedot((n*2) 1) > 0
 swarmstatedot((n*2) 1) 0.1*swarmstatedot((n*2) 1);
 else
 swarmstatedot((n*2) 1) 0.1*swarmstatedot((n*2) 1);
 end

 if swarmstatedot(n*2) > 0
 swarmstatedot(n*2) 0.1*swarmstatedot(n*2);
 else
 swarmstatedot(n*2) 0.1*swarmstatedot(n*2);
 end
 end
 end
 capability SURFACE(t) capability(1);

 % CONTROL LAW (CONT'D)
 swarmstate swarmstate + swarmstatedot;

 x1 plot(t+1) swarmstate(1);
 y1 plot(t+1) swarmstate(2);

 %%%%%%%%%%%%% CONTROL LOOP FOR UNDERWATER VEHICLES %%%%%%%%%%%%%%

����

 for i 1:1:length(cap desired U)
 for n 1:1:((length(swarmstate U))/3) % n vessel number
 R sqrt((xd U(i) (swarmstate U(n*3 2)))^2 + (yd U(i) swarmstate U(n*3 1))^2
+ (zd U(i) swarmstate U(n*3))^2);
 R s sqrt((xd U(i) (ssu(n*3 2)))^2 + (yd U(i) ssu(n*3 1))^2 + (zd U(i)
ssu(n*3))^2);
 if R > 501
 pd(n) 1/R;
 pd symbol(n) 1/R s;
 else

 TL 10*log(R) + 30 + alpha*R; % Transmission Loss based on Cylindrical
Spreading
 TS 10*log(0.25*10^2); % Target Strength based on large sphere w/
10m radius
 SL 180; % Assuming Sonar Source Level of 180db
 snr SL 2*TL + TS;
 magnitude 10^(snr/10);
 fhandle @(x) exp(x.^2);
 pd(n) 0.5 * (2/sqrt(pi))*integral(fhandle,sub 1 sqrt(magnitude),Inf);

 TL s 10*log(R s) + 30 + alpha*R s;
 snr s SL 2*TL s + TS;
 magnitude s 10^(snr s/10);
 pd symbol(n) 0.5 * (2/sqrt(pi))*int(fhandle,sub 1 sqrt(magnitude s),Inf);
 end

 end
 % calculate overall capability
 capability u(i) 0;
 cadd u 1;
 for o 1:1:((length(swarmstate U))/3)
 capability u(i) capability u(i) + pd(o)*cadd u;
 cadd u (1 capability u(i));
 end

 overall cap u 0;
 cadd 1;
 for o 1:1:((length(swarmstate U))/3)
 overall cap u overall cap u + pd symbol(o)*cadd;
 cadd (1 overall cap u);
 end

 jacobian s u jacobian(overall cap u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u,x4u,y4u,z4u]);
% calculate jacobian matrix based on partial derivative of position 0f (x1, y1)...
 jacobian subbed u
subs(jacobian s u,[x1u,y1u,z1u,x2u,y2u,z2u,x3u,y3u,z3u,x4u,y4u,z4u],[x1 plot u(t),y1 plot u(t),z1
plot u(t),x2 plot u(t),y2 plot u(t),z2 plot u(t),x3 plot u(t),y3 plot u(t),z3 plot u(t),x4 plot

u(t),y4 plot u(t),z4 plot u(t)]);
 jaco mat u(i,:) (double(jacobian subbed u)); % final jacobian in numbers
 end

 % ADD IN SECONDARY CONTROLS FOR UNDERWATER VESSELS

 % Defining Variables

 safezone u 100;
 safezone unit u 20;
 safezone xdomain unit u 20;
 unitrepx xdomain u 0;
 unitrepy xdomain u 0;
 unitrepz xdomain u 0;
 objrepx u 0;
 objrepy u 0;
 objrepz u 0;
 unitattx 0;
 unitatty 0;
 unitattz 0;
 unitrepx u 0;

����

 unitrepy u 0;
 unitrepz u 0;

 for no sub 1:1:length(swarmstate U)/3

 for no surface 1:1:length(swarmstate)/2

 distance for localization(no sub) sqrt((swarmstate U(no sub*3 2)
(swarmstate((no surface*2) 1)))^2 + (swarmstate U((no sub*3) 1) swarmstate(no surface*2))^2 +
(swarmstate U(no sub*3))^2);
 if distance for localization(no sub) < 500
 swarmstate U(no sub*3 2) swarmstate U(no sub*3 2);
 swarmstate U(no sub*3 1) swarmstate U(no sub*3 1);
 swarmstate U(no sub*3) swarmstate U(no sub*3);
 time(no sub) 0;
 else
 swarmstate U(no sub*3 2) swarmstate U(no sub*3 2);
 swarmstate U(no sub*3 1) swarmstate U(no sub*3 1);
 swarmstate U(no sub*3) swarmstate U(no sub*3);
 time(no sub) time(no sub) + 1;
 end
 end
 end

 % ASSIT IN LOCALIZATION
 for uol 1:1:((length(swarmstate))/2)

 [val idx] max(time);
 if val > 300

 angle unit u alpha att atan2(((swarmstate U((idx*3 2)) swarmstate((uol*2
1)))),((swarmstate U(idx*3) 1) swarmstate(uol*2)));
 angle unit u beta att atan2(((swarmstate U((idx*3))
0)),((swarmstate U((idx*3) 1) swarmstate(uol*2))));
 angle unit u charlie att atan2(((swarmstate U((idx*3))
0)),((swarmstate U((idx*3) 2) swarmstate(uol*2 1))));

 magnitude alpha norm(swarmstate U((idx*3 2):(idx*3 1)) swarmstate);
 magnitude beta norm(swarmstate U((idx*3 1):(idx*3)) [swarmstate(2);0]);
 magnitude charlie norm([swarmstate U(idx*3 2);swarmstate U(idx*3)]
[swarmstate(1);0]);

 unitattx unitattx magnitude alpha*sin(angle unit u alpha att)
magnitude charlie*cos(angle unit u charlie att);
 unitatty unitatty + magnitude alpha*cos(angle unit u alpha att)
magnitude beta*cos(angle unit u beta att);
 unitattz unitattz magnitude beta*sin(angle unit u beta att)
magnitude charlie*sin(angle unit u charlie att);

 vunit u attloc [0;0;0;0;0;0;0;0;0;0;0;0];
 vunit u attloc((idx*3) 2) unitattx;
 vunit u attloc((idx*3) 1) unitatty;
 vunit u attloc(idx*3) unitattz;

 else
 vunit u attloc [0;0;0;0;0;0;0;0;0;0;0;0];
 end
 end

 % CONTROL LAW FOR UNDERWATER
 jacob pinv u pinv(jaco mat u);
 capability u t transpose(capability worstcase);
 capability plot u(t,:) capability u;
 cdot u 1000*(cap desired U capability u t);
 [sizex u, sizey u] size(jacob pinv u*jaco mat u);

����

 swarmstatedot u 100*jacob pinv u * cdot u + 45000*((eye(sizex u,sizey u)
jacob pinv u*jaco mat u)*vunit u attloc) + 45*((eye(sizex u,sizey u)
jacob pinv u*jaco mat u)*vobst u) + 45*((eye(sizex u,sizey u) jacob pinv u*jaco mat u)*vunit u)
+ 45*((eye(sizex u,sizey u) jacob pinv u*jaco mat u)*vunit u xdomain);

 % Speed Limitations

 for n 1:1:((length(swarmstate U))/3)
 while abs(sqrt(((swarmstatedot u((n*3) 2))^2) + (swarmstatedot u((n*3) 1)^2) +
swarmstatedot u(n*3)^2)) > 8
 if swarmstatedot u((n*3) 2) > 0
 swarmstatedot u((n*3) 2) 0.5*swarmstatedot u((n*3) 2); else
 swarmstatedot u((n*3) 2) 0.5*swarmstatedot u((n*3) 2);
 end

 if swarmstatedot u((n*3) 1) > 0
 swarmstatedot u((n*3) 1) 0.5*swarmstatedot u((n*3) 1);
 else
 swarmstatedot u((n*3) 1) 0.5*swarmstatedot u((n*3) 1);
 end

 if swarmstatedot u(n*3) > 0
 swarmstatedot u(n*3) 0.5*swarmstatedot u(n*3);
 else
 swarmstatedot u(n*3) 0.5*swarmstatedot u(n*3);
 end
 end
 end

 %%%% INCOMING TARGET AND CONTROL FOR TARGET

 x target x target 3;
 y target y target;

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 r target(n) sqrt((x target (swarmstate U(n*3 2)))^2 + (y target swarmstate U(n*3
 1))^2 + (0 swarmstate U(n*3))^2);

 if r target(n) > 501
 pd target(n) 1/r target(n);
 else
 TL target 10*log(r target(n)) + 30 + alpha*r target(n); % Transmission Loss
based on Cylindrical Spreading
 TS target 10*log(0.25*10^2); % Target Strength based on large sphere
w/ 10m radius
 SL target 180; % Assuming Sonar Source Level of 180db
 snr target SL target 2*TL target + TS target;
 magnitude 10^(snr target/10);
 fhandle @(x) exp(x.^2);
 pd target(n) 0.5 * (2/sqrt(pi))*integral(fhandle,sub 1 sqrt(magnitude),Inf);
 end
 end
 % calculate probability of detection
 p detect 0;
 cadd u 1;
 for o 1:1:((length(swarmstate U))/3)
 p detect p detect + pd target(o)*cadd u;
 cadd u (1 p detect);
 end

 % randomize to see if detection actually happens
 randomized rand();
 if randomized < p detect
 detect 1;
 end

 if detect 1
 % find nearest UUV

����

 [range index] min(r target);

 % set UUV to PN

 ang alpha atan2(((swarmstate U((index*3 2)) x target)),((swarmstate U(index*3) 1)
y target));
 ang beta atan2(((swarmstate U((index*3)) 0)),((swarmstate U((index*3) 1)
y target)));
 ang charlie atan2(((swarmstate U((index*3)) 0)),((swarmstate U((index*3) 2)
x target)));

 mag alpha norm(swarmstate U((index*3 2):(index*3 1)) [x target;y target]); % Distance
from X Y plane
 mag beta norm(swarmstate U((index*3 1):(index*3)) [y target;0]); % Distance
from Y Z Plane
 mag charlie norm([swarmstate U(index*3 2);swarmstate U(index*3)] [x target;0]); %
Distance from X Z plane

 x target v mag alpha*sin(ang alpha) mag charlie*cos(ang charlie);
 y target v mag alpha*cos(ang alpha) mag beta*cos(ang beta);
 z target v mag beta*sin(ang beta) mag charlie*sin(ang charlie);

 while sqrt(x target v^2 + y target v^2 + z target v^2) > 8
 x target v x target v * 0.5;
 y target v y target v * 0.5;
 z target v z target v * 0.5;
 end

 swarmstatedot u((index*3) 2) x target v;%x acceleration
 swarmstatedot u((index*3) 1) y target v;%y acceleration
 swarmstatedot u(index*3) z target v;%z acceleration

 if range < 80 % SET SO DOESNT INTERFERE WITH CONTROL
 swarmstatedot u((index*3) 2) 1000000;
 swarmstatedot u((index*3) 1) 1000000;
 swarmstatedot u(index*3) 0;
 y target 1000000;
 x target 1000000
 end

 end

 % FINAL SWARMSTATE FOR UNDERWATER
 swarmstate U swarmstate U + swarmstatedot u;
 for n 1:1:((length(swarmstate U))/3) % n vessel number
 if swarmstate U(n*3) > 0
 swarmstate U(n*3) 0;
 end
 end

 % CALCULATING WORST CASE CAPABILITY

 for n 1:1:length(swarmstate U)/3
 unc(n) time(n)*0.160376;
 end

 for n 1:1:length(xd U)
 if (xd U(n) swarmstate U(1)) > 0
 x1 plot u(t+1) swarmstate U(1) unc(1);
 else
 x1 plot u(t+1) swarmstate U(1) + unc(1);
 end

 if (yd U(n) swarmstate U(2)) > 0
 y1 plot u(t+1) swarmstate U(2) unc(1);
 else
 y1 plot u(t+1) swarmstate U(2) + unc(1);

����

 end

 if (zd U(n) swarmstate U(3)) > 0
 z1 plot u(t+1) swarmstate U(3) unc(1);
 else
 z1 plot u(t+1) swarmstate U(3) + unc(1);
 if z1 plot u(t+1) > 0
 z1 plot u(t+1) 0;
 end
 end

 if (xd U(n) swarmstate U(4)) > 0
 x2 plot u(t+1) swarmstate U(4) unc(2);
 else
 x2 plot u(t+1) swarmstate U(4) + unc(2);
 end

 if (yd U(n) swarmstate U(5)) > 0
 y2 plot u(t+1) swarmstate U(5) unc(2);
 else
 y2 plot u(t+1) swarmstate U(5) + unc(2);
 end

 if (zd U(n) swarmstate U(6)) > 0
 z2 plot u(t+1) swarmstate U(6) unc(2);
 else
 z2 plot u(t+1) swarmstate U(6) + unc(2);
 if z2 plot u(t+1) > 0
 z2 plot u(t+1) 0;
 end
 end

 if (xd U(n) swarmstate U(7)) > 0
 x3 plot u(t+1) swarmstate U(7) unc(3);
 else
 x3 plot u(t+1) swarmstate U(7) + unc(3);
 end

 if (yd U(n) swarmstate U(8)) > 0
 y3 plot u(t+1) swarmstate U(8) unc(3);
 else
 y3 plot u(t+1) swarmstate U(8) + unc(3);
 end

 if (zd U(n) swarmstate U(9)) > 0
 z3 plot u(t+1) swarmstate U(9) unc(3);
 else
 z3 plot u(t+1) swarmstate U(9) + unc(3);
 if z3 plot u(t+1) > 0
 z3 plot u(t+1) 0;
 end
 end

 if (xd U(n) swarmstate U(10)) > 0
 x4 plot u(t+1) swarmstate U(10) unc(4);
 else
 x4 plot u(t+1) swarmstate U(10) + unc(4);
 end

 if (yd U(n) swarmstate U(11)) > 0
 y4 plot u(t+1) swarmstate U(11) unc(4);
 else
 y4 plot u(t+1) swarmstate U(11) + unc(4);
 end

 if (zd U(n) swarmstate U(12)) > 0
 z4 plot u(t+1) swarmstate U(12) unc(4);
 else

����

 z4 plot u(t+1) swarmstate U(12) + unc(4);
 if z4 plot u(t+1) > 0
 z4 plot u(t+1) 0;
 end
 end

 end

 swarmstate worstcase [x1 plot u(t+1), y1 plot u(t+1), z1 plot u(t+1), x2 plot u(t+1),
y2 plot u(t+1),
z2 plot u(t+1),x3 plot u(t+1),y3 plot u(t+1),z3 plot u(t+1),x4 plot u(t+1),y4 plot u(t+1),z4 plot
u(t+1)];

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 if swarmstate worstcase(n*3) > 0
 swarmstate worstcase(n*3) 0;
 end
 end

 % USE ABOVE PLOTS TO CALCULATE WORST CASE CAPABILITY DELIVERED

 for i 1:1:length(cap desired U)

 for n 1:1:((length(swarmstate U))/3) % n vessel number
 R sqrt((xd U(i) (swarmstate worstcase(n*3 2)))^2 + (yd U(i)
swarmstate worstcase(n*3 1))^2 + (zd U(i) swarmstate worstcase(n*3))^2);
 if R > 501
 pd(n) 1/R;
 else

 TL 10*log(R) + 30 + alpha*R; % Transmission Loss based on Cylindrical
Spreading
 TS 10*log(0.25*10^2); % Target Strength based on large sphere w/
10m radius
 SL 180; % Assuming Sonar Source Level of 180db
 snr SL 2*TL + TS;
 magnitude 10^(snr/10);
 fhandle @(x) exp(x.^2);
 pd(n) 0.5 * (2/sqrt(pi))*integral(fhandle,sub 1 sqrt(magnitude),Inf); %
 end

 end
 % calculate overall capability
 capability worstcase(i) 0;
 cadd u 1;
 for o 1:1:((length(swarmstate U))/3)
 capability worstcase(i) capability worstcase(i) + pd(o)*cadd u;
 cadd u (1 capability worstcase(i));
 end
 end

 %%%%%%%%%%% PLOTS

 delete(h)
 delete(h1)
 delete(h2)
 delete(h3)
 delete(h4)
 delete(h5)
 delete(h6)
 delete(h7)
 delete(h8)

 delete(text2)

����

 delete(text4)
 delete(text6)
 delete(text7)
 delete(text8)
 delete(text9)
 delete(text10)

 figure(1)
 axis([0 2500 0 2000 300 0])
 hold on
 grid on
 plot3(xd U,yd U,zd U,'k^','LineWidth',2.0)

 plot(xd,yd,'^k')

 xlabel('X axis')
 ylabel('Y axis')
 zlabel('Z axis')

 h plot3(swarmstate U(1),swarmstate U(2),swarmstate U(3),'*','LineWidth',2.5,'Color',[0 0.33
0]);
 h1 plot3(swarmstate U(4),swarmstate U(5),swarmstate U(6),'*','LineWidth',2.5,'Color',[0
0.66 0]);
 h2 plot(x1 plot(t+1),y1 plot(t+1),'*','Color',[0 0 0.5]);
 h3 plot3(swarmstate U(7),swarmstate U(8),swarmstate U(9),'*','LineWidth',2.5,'Color',[0
0.99 0]);
 h4 plot3(swarmstate U(10),swarmstate U(11),swarmstate U(12),'*','LineWidth',2.5,'Color',[0
0.25 0.25]);

 h5 plot3([x1 plot u(t+1) x1 plot u(t+1)],[y1 plot u(t+1) y1 plot u(t+1)],[z1 plot u(t+1)
300],' ','Color',[0.5 0.5 0.5]);
 h6 plot3([x2 plot u(t+1) x2 plot u(t+1)],[y2 plot u(t+1) y2 plot u(t+1)],[z2 plot u(t+1)
300],' ','Color',[0.5 0.5 0.5]);
 h7 plot3([x3 plot u(t+1) x3 plot u(t+1)],[y3 plot u(t+1) y3 plot u(t+1)],[z3 plot u(t+1)
300],' ','Color',[0.5 0.5 0.5]);
 h8 plot3([x4 plot u(t+1) x4 plot u(t+1)],[y4 plot u(t+1) y4 plot u(t+1)],[z4 plot u(t+1)
300],' ','Color',[0.5 0.5 0.5]);

 target plot(x target,y target,'*','Color','k');

 text1 text(xd, yd, ['Desired Capability:',' ',num2str(cap desired)]);
 text2 text(xd, yd 50, ['Current Capability:',' ',num2str(capability)]);

 text3 text(xd U(1), yd U(1), zd U(1), ['Desired Capability:','
',num2str(cap desired U(1))]);
 text4 text(xd U(1), yd U(1) 50, zd U(1), ['Current Capability:','
',num2str(capability worstcase(1))]);

 text5 text(xd U(2), yd U(2) 100, zd U(2), ['Desired Capability:','
',num2str(cap desired U(2))]);
 text6 text(xd U(2), yd U(2) 150, zd U(2), ['Current Capability:','
',num2str(capability worstcase(2))]);

 text7 text(swarmstate U(1),swarmstate U(2),swarmstate U(3),['TimeLL1:', '
',num2str(time(1))]);
 text8 text(swarmstate U(4),swarmstate U(5),swarmstate U(6),['TimeLL2:', '
',num2str(time(2))]);
 text9 text(swarmstate U(7),swarmstate U(8),swarmstate U(9),['TimeLL3:', '
',num2str(time(3))]);
 text10 text(swarmstate U(10),swarmstate U(11),swarmstate U(12),['TimeLL4:', '
',num2str(time(4))]);
 title(sprintf('Time: %d s', t));

 drawnow
end% END TIME LOOP

��	�

�

BBIBLIOGRAPHY

[1] J. Hanes, “Restricting the Robotic Arms Race,” Yale Scientific, Jul. 2014.
www.yalescientific.org.

[2] Fox News, “Navy: Self-Guided Unmanned Patrol Boats Make Debut.” Fox News,
October 2014. www.foxnews.com.

[3] B.E. Bishop, “On the use of Redundant Manipulator Techniques for Control of Platoons
or Cooperation Robotic vehicles,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 33, no. 5, Sep. 2003.

[4] E.A Barnes, B.E. Bishop, “Utilizing Navigational Capability to Control Cooperating
Robotic Swarms in Reconnaissance-Based Operations,” in 40th Southeastern
Symposium on System Theory, New Orleans, LA, March 2008.

[5] T. Balch and R. Arkin, “Communication in Reactive Multi-Agent Robotic Systems,”
Autonomous Robots, 1994.�

[6] Y.C. Tan, “Synthesis of a Controller for Swarming Robots Performing Underwater Mine
Countermeasures,” Trident Scholar Report, Report #328, May 2004.

[7] E.A. Barnes, “Capability Driven Robotic Swarms in Reconnaissance-Based Operations,”
Trident Scholar Report, Report #363, May 2008.

[8] Rafael Toplite EOS Brochure. www.rafael.co.il.

[9] J. Donohue, “Introductory Review of Target Discrimination Criteria,” Philips Laboratory
Air Force System Command, Report #E-19290U, Dec. 1991.

[10] Telephonics RDR-1700 Brochure. www.telephonics.com

[11] C.M. Payne, Principles of Naval Weapon Systems, Annapolis, MD: Naval Institute Press,
Jan. 2010.

[12] R.M. O’Donnel, “Radar Systems Engineering Lecture: Detection of Signals in Noise,”
IEEE New Hampshire Section IEEE AES Society, Jan. 2010.

[13] R.P. Hodges, Underwater Acoustics: Analysis, Design and Performance of Sonar, West
Sussex, United Kingdom: John Wiley & Sons, 2010.

[14] E. Tucholski, SP411: Underwater Acoustics and Sonar Class Notes, United States Naval
Academy

[15] J.R. Movellan, Introduction to Probability Theory and Statistics, Unpublished, Aug. 2008.

��
�

[16] Y.C. Tan and B.E. Bishop, “Combining Classical and Behavior-Based Control for
Swarms of Cooperating Vehicles,” in International Conference on Robotics and
Automation, Barcelona, Spain, Apr. 2005.

[17] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” The
International Journal of Robotics Research, vol. 5, no. 1, Mar. 1986.

[18] L. Itti and J. Mataric, “Introduction to Robotics Lecture Notes: Effectors and Actuators,”
University of Southern California.

[19] J.A. Piepmeier, “Uncalibrated Vision-Based Mobile Robot Obstacle Avoidance,” in 33rd
Southeastern Symposium on Systems Theory, Athens, OH, Mar. 2001.

[20])��/�$�6�9���������&��:�!���4����%�����)*��%�-�*���%���3�������$�!���6;�#$���
�����������%6�������<��!���!���<%.�%����%.6�=����!$*������'%����*������>�!$%���.�6�
��-����.�6�=)6�?����������

[21] A. Alcocer et al., “Underwater Acoustic Positioning Systems Based on Buoys with GPS,”
in Proceedings of the Eigth European Conference on Underwater Acoustics, Carvoeiro,
Portugal, Jun. 2006.

�

�

�

�

�

�

�

�

�

�

�

